Analysis of the Safety Effects of Traffic, Geometric and Access Parameters on Truck Arterial Corridors

Most Afia Sultana
Research Assistant
Department of Civil & Environmental Engineering
South Dakota State University
Brookings SD 57006
Fax: (605) 655-6474
Email: most.sultana@jacks.sdstate.edu

Xiao Qin, Ph.D., P.E.
(Corresponding author)
Associate Professor
Department of Civil and Environmental Engineering, South Dakota State University
CEH 148, Box 2219, Brookings, SD, 57007
Phone: (605) 688-6355
Fax: (605) 688-6476
Xiao.qin@sdstate.edu

Madhav Chitturi, Ph.D.
Associate Researcher
Traffic Operations and Safety (TOPS) Laboratory, University of Wisconsin-Madison
Department of Civil and Environmental Engineering
B243 Engineering Hall
1415 Engineering Drive
Madison, WI 53706
Phone: (608) 890-2439
mchitturi@wisc.edu

David A. Noyce, Ph.D., P.E.
Professor
Director, Traffic Operations and Safety (TOPS) Laboratory, University of Wisconsin-Madison
Department of Civil and Environmental Engineering
1204 Engineering Hall
1415 Engineering Drive
Madison, WI 53706
Phone: (608) 265-1882
noyce@engr.wisc.edu

Word count: 5450 +8 (4 Tables and 4 Figure)*250 = 7450

Submitted for Presentation and Publication to the 93rd annual meeting of the Transportation Research Board January 12-16, 2014 Washington, DC
ABSTRACT

According to the National Highway Traffic Safety Administration (NHTSA), over 400,000 truck-related crashes occurred in 2009; approximately 7,800 of those were fatal. Truck-related crashes undermine truck’s remarkable contribution to the United States economy. Truck safety research on arterial streets is considerably disproportionate when compared with the extensive studies of freeway truck safety. Identifying critical factors contributing to truck-related crashes and developing remedial and preventive strategies to reduce truck-related crashes and their consequences on arterials is imperative.

Truck-related crashes can be mitigated through careful planning of the location, design, and operation of driveways, median openings, and street connections. In this study, access related data were collected manually in addition to roadway geometric characteristics. The augmented data offered more explanation and prediction power to truck crashes. Standard deviation of commercial driveway throat width, commercial driveway throat width with flare and its standard deviation, proportion of divided commercial driveway, minimum distance of a driveway to the signalized intersection, signal density and shoulder width were significant factors for the crash frequency prediction. Generalized negative binomial (GNB) model was used to identify sources of data overdispersion. This study found that some previously significant variables are no longer significant after adding access parameters demonstrating the impact of access parameters on truck related crashes on arterials. This noticeable change in the statistical models composed of different variables is a reminder that a spurious relationship can form if a causal relationship is nonexistent.
INTRODUCTION

Arterial roads collect traffic from local roads and channel it to freeways, providing both mobility and accessibility. Good access management of arterial roads involves balancing the dual role of the arterial roadway: corridors for through traffic and access to adjacent properties and economic activities. Some key factors commonly identified in the literature as directly influencing safety performance of arterial highways include driveway spacing, signal density, driveway design, driveway proximity to intersections and interchanges, median configuration, geometric design elements, land use and signal timing plan.

Arterial safety conditions are critical because of the numerous access points, turning movements, and mixture of transportation modes, which can be complicated by various traffic control devices and strategies. For arterial movement, roadway characteristics such as lane width, shoulder width, posted speed limit, median width, horizontal/vertical curvature and pavement surface conditions are important determinants in safety, as each of these components relates to a certain level of service when the arterial acts as a thoroughfare. From an access perspective, driveways and median opening densities are important measures related to safety as each of them adds to the number of conflicts for vehicles along a roadway during egresses and ingresses. While it is certainly necessary to ensure movement, it is also important to accommodate access to commercial and residential properties; thus, the number, type, spacing and location of driveways and median openings need to be planned carefully. Therefore, it is important for local governments, road authorities and land developers to coordinate access decisions based on the arterial’s desired level of safety, mobility and accessibility.

Driveway related crashes amounted more than 10% of total crashes in Iowa, Indiana and Michigan (1-3). In Maine, 1 in 6 crashes occurred at driveways or entrances; 1 in 5 people involved in crashes were involved in driveway or entrance related crashes in 1996 (4). Rawlings and Gattis (5) examined over 2,000 accident reports from Springdale, Arkansas for one year to identify which crashes were driveway-related. “Driveway-related” was defined as a collision that occurred either directly or indirectly due to the operation of a driveway. Researchers found that the 1/6 of crashes involved left-turn egresses (5). The proportion of driveway related accidents to the overall accident numbers seen in these states illustrates the magnitude of the problem. However, the solution to the problem is not simply limiting, reducing or closing the access points, but providing access at proper locations and designing them in a manner that is safer and more effective.

Due to the substantial truck-passenger vehicle interactions that occur on arterial streets, it is necessary to study the relationship between truck safety and arterial access management, while also considering the geometric characteristics and traffic control. Therefore, the main objective of this study is to identify the safety impact of access related phenomena on truck arterial corridors. The study begins with an extensive literature review and focused on collecting data relating to access parameters. To investigate the consequences of incorporating access related variables in the previous model (6), two negative binomial models were compared, and the implications of the statistically significant variables were discussed based on the study context.
LITERATURE REVIEW

Arterial streets are the “last miles” for trucks when delivering freight to commercial and residential destinations or entering the freeway system. Frequent and direct access from commercial and residential properties to an arterial road reduces the capacity and creates substantial opportunities for crashes. Increasing the spacing between access points helps reduce the number and variety of events to which drivers must respond. In addition, greater access spacing gives drivers more time to perceive, react, and navigate safely. Truck crashes in many of the counties of Wisconsin have continued to increase in recent years, particularly on arterial streets (7). The increase in truck crashes has become a major issue for the researchers and transportation officials who frequently debate on the cost effectiveness of implementing access management techniques (i.e., raised medians, or driveway consolidation) to alleviate some of the safety concerns. Application of access management best practices has benefits for motorists, transit riders, planning and government agencies, and communities.

In recent years, access management along arterial streets started to gain attention from researchers (8-11). Using microscopic traffic simulation models for 11 arterial corridors, Eisele and Frawley estimated the relationships between crash rates and access point (driveways and public street intersections) densities, with or without the presence of raised medians or two-way left-turn lanes (8). They concluded that as access point density increases, there is an increase in crash rates which is irrespective of the median type. However, the researchers also found that the relationship between access density and crash rate is higher on roadways without raised medians. Lee et al. (11) analyzed the crashes that occurred at midblock of an urban arterial road using log-linear models to show that midblock crashes are more likely to occur on road sections with access points and a high percentage of trucks (>20%). Results show that median opening, driver age/gender, lighting, time of day and day of week are associated with different types of crashes classified by the vehicles involved in crashes. Lee’s study shows the importance of analyzing divided urban arterial midblock crashes with high truck volume by travel direction, as the complex interaction among cars and trucks is influenced by more frequent egress and ingress driveway traffic.

Numerous studies have been conducted on the relationship between access management techniques and safety, specifically when it comes to access spacing, corner clearance and medians (13-17). Schultz et al. (14-16) undertook several studies on urban arterial access management and safety in order to determine the safety benefits provided by access management techniques in Utah. Statistical analyses showed that on roadways that included high access density, numerous signals per unit length and lack of medians were positively related with increased crash rate and severity. In particular, crash totals, crash rates and rear-end crashes in intersection functional areas increase with the increase in commercial access density. In a follow-up study, the researchers proved that raised medians and driveway consolidation can change the crash pattern or manner of collision and the injury severity. Gluck, Levinson, and Stover (18) stated that doubling the access frequency from 10 to 20 access points per mile would increase accident rates by 40 percent. A road with 60 access points per mile would have tripled the accident rate as compared with a density of 10 access points per mile. Each additional access point increases the accident rate by about 4%. The results suggest a generally consistent relationship - the greater the frequency of driveways and intersections, the greater the number of accidents. Gattis et al. (19) presented six major considerations for driveway design, including...
maintaining or improving the efficiency and safety of the intersecting roadway, and providing adequate sight distance for road and sidewalk users. Stover and Koepke (20) indicated that two-way driveways allow for simultaneous two-way operations, and thus it is better to have separate entrance and exit lanes.

Adequate spacing and design of access to crossroads in the vicinity of freeway ramps avoids traffic backups and preserves safe and efficient traffic operation (21). A methodology was developed by Rakha et al. (13) to quantitatively evaluate the safety impacts of different access-spacing standards in Virginia. According to their analysis, shortcomings exist in the AASHTO standards, and significant safety benefits can be achieved by adopting stricter standards such as those recommended in the TRB Access Management Manual. For example, an increase in the minimum access spacing from 300 ft to 600 ft results in a 50% reduction in the crash rate.

In Wisconsin between 2005 and 2009, 7.4 percent of midblock crashes were related to access movements, and 20 percent of intersection crashes were related to turning left into the selected truck preferred arterial corridors (7). Though numerous studies have been conducted in hopes of capturing the contributing factors to crashes due to access related variables, nevertheless, the impacts of access related variables together with traffic, geometric and pavement variables were not specifically considered truck preferred corridors. Being motivated by plan and design of safer corridors heavily used by trucks, this study aims to enrich the current body of knowledge through informed data collection and statistical models. It is expected that the cause-effect relationships between crashes and presumed crash causal factors will be explored.

DATA COLLECTION AND PROCESSING

Data used in this research consisted of five years (2005 to 2009) of crash counts, as well as geometric, pavement, access related data and traffic volume data. Truck crashes were retrieved from the online Wisconsin crash database through the WisTransportal System (7). In order to undertake the investigation of truck crashes from a corridor perspective based on arterial roads, truck corridor selection was confined to principal arterials and minor arterials. Truck corridors were identified based on criteria established in a previous study (6). The number of corridors has been changed from 100 to 74 because this study considered the corridors with signalized intersections. Descriptive statistics for key variables used in the crash frequency model can be seen in Table 1.

As shown in Table 1, five year crash total had a mean of 93 and a standard deviation of 79, with a maximum of 407 crashes. Corridor lengths vary from relatively short (1.03 mi) to very long (16.94 mi), with an average segment length of 4.88 mi. The mean corridor AADT was 17,825. Most access-related variables are not readily available in any GIS or table format, meaning the most reliable source for collecting this information is through manual measurements of aerial photographs. Considerable effort has been made to collect access related variables such as median opening width, length of left turn bay, length of two way left turn lane, driveway width and driveway width with flare. These variables were measured from Google Earth and Google Map images, and the mean and standard
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Avg</th>
<th>Stdv</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash count</td>
<td>5 year crash count for each corridor</td>
<td>93</td>
<td>79</td>
<td>14</td>
<td>407</td>
</tr>
<tr>
<td>L</td>
<td>Length of the corridor (miles)</td>
<td>4.88</td>
<td>3.42</td>
<td>1.03</td>
<td>16.94</td>
</tr>
<tr>
<td>AADT</td>
<td>Annual average daily traffic</td>
<td>17825</td>
<td>6126</td>
<td>8346</td>
<td>39435</td>
</tr>
<tr>
<td>AATT</td>
<td>Annual average daily truck traffic</td>
<td>1126</td>
<td>213</td>
<td>796</td>
<td>1892</td>
</tr>
<tr>
<td>W_Med_Op</td>
<td>Average width of median opening within a corridor (ft)</td>
<td>71.16</td>
<td>14.41</td>
<td>36</td>
<td>97.14</td>
</tr>
<tr>
<td>Stdv_W_Med_Op</td>
<td>Standard deviation of median opening width (ft)</td>
<td>18.95</td>
<td>8.81</td>
<td>0</td>
<td>44.39</td>
</tr>
<tr>
<td>Med_den</td>
<td>Median opening density (per mile)</td>
<td>4.48</td>
<td>3.56</td>
<td>0</td>
<td>17.64</td>
</tr>
<tr>
<td>Min_Dist</td>
<td>Minimum distance of a driveway to a signalized intersection (ft)</td>
<td>134</td>
<td>252</td>
<td>0</td>
<td>1920</td>
</tr>
<tr>
<td>TWLTL</td>
<td>Length of Two Way Left Turn Lane (mi)</td>
<td>0.70</td>
<td>0.79</td>
<td>0.06</td>
<td>3.58</td>
</tr>
<tr>
<td>L_LT</td>
<td>Average length of left turn bay within a corridor (ft)</td>
<td>178</td>
<td>72</td>
<td>60</td>
<td>451</td>
</tr>
<tr>
<td>Stdv_L_LT</td>
<td>Standard deviation of length left turn bay length (ft)</td>
<td>68.73</td>
<td>33.70</td>
<td>15.29</td>
<td>197</td>
</tr>
<tr>
<td>R_Throat_W</td>
<td>Average width of driveway (ft)</td>
<td>12.86</td>
<td>2.61</td>
<td>8</td>
<td>22.03</td>
</tr>
<tr>
<td>R_Stdv_Throat_W</td>
<td>Standard deviation of driveway width (ft)</td>
<td>3.91</td>
<td>2.35</td>
<td>0.70</td>
<td>15.80</td>
</tr>
<tr>
<td>R_Flare_W</td>
<td>Average width of driveway with flare (ft)</td>
<td>25.49</td>
<td>9.36</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>R_Stdv_Flare_W</td>
<td>Standard deviation of driveway width with flare (ft)</td>
<td>7.36</td>
<td>6.51</td>
<td>0.78</td>
<td>46.60</td>
</tr>
<tr>
<td>C_Throat_W</td>
<td>Average throat width of driveway (ft)</td>
<td>28.34</td>
<td>4.17</td>
<td>19.80</td>
<td>37.10</td>
</tr>
<tr>
<td>C_Stdv_Throat_W</td>
<td>Standard deviation of driveway throat width (ft)</td>
<td>9.27</td>
<td>3.15</td>
<td>4.16</td>
<td>17.87</td>
</tr>
<tr>
<td>C_Flare_W</td>
<td>Average width of driveway with flare</td>
<td>48.07</td>
<td>15.75</td>
<td>25.20</td>
<td>112.3</td>
</tr>
<tr>
<td>C_Stdv_Flare_W</td>
<td>Standard deviation of driveway width with flare</td>
<td>19.88</td>
<td>11.0</td>
<td>5.10</td>
<td>56.43</td>
</tr>
<tr>
<td>Drv_SigInt</td>
<td>Average number of driveway located within .1 mile from Signalized Intersection</td>
<td>17.38</td>
<td>14.36</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>C_Div_Drv</td>
<td>Proportion of divided driveway, Commercial</td>
<td>0.33</td>
<td>0.18</td>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>Drv_den</td>
<td>Driveway density for a corridor/ mile</td>
<td>17.09</td>
<td>11.50</td>
<td>1.10</td>
<td>54.70</td>
</tr>
<tr>
<td>C_Den</td>
<td>Number of Commercial driveway per mile</td>
<td>9.57</td>
<td>7.37</td>
<td>0.9</td>
<td>41.30</td>
</tr>
<tr>
<td>R_Den</td>
<td>Residential driveway density / mile</td>
<td>7.51</td>
<td>7.15</td>
<td>0.0</td>
<td>34.20</td>
</tr>
<tr>
<td>Sig_Den</td>
<td>Signal density (signals/mile)</td>
<td>1.52</td>
<td>1.01</td>
<td>0.12</td>
<td>4.85</td>
</tr>
<tr>
<td>PSI</td>
<td>Pavement Serviceability Index</td>
<td>2.86</td>
<td>0.81</td>
<td>0.88</td>
<td>4.35</td>
</tr>
<tr>
<td>STD(PSI)</td>
<td>Standard deviation of PSI</td>
<td>0.61</td>
<td>0.43</td>
<td>0</td>
<td>1.98</td>
</tr>
<tr>
<td>SHWD</td>
<td>Shoulder width</td>
<td>3.10</td>
<td>2.95</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
deviation of each was calculated. Median opening width, left turn bay length, minimum distance
to a signalized intersection and intersection functional area are illustrated in Figure 1. The
corridor start and end point was carefully identified by matching the attributes of these corridors
in the GIS shapefile. Signal, median opening and driveway density were calculated by the ratio
of their count to corridor lengths.

Driveways were categorized as either residential or commercial (commercial driveway
includes commercial, industrial, institutional etc.) by counting the number of visible parking
spots. Primarily, driveway turn radius, driveway throat width, driveway throat length, driveway
slope, existence of dedicated turn lanes, and length of sight distance (especially for drivers
exiting driveways) were considered as the key driveway design factors. However, due to time
limitation and technical difficulties (e.g. driveway slope), data collection was eventually limited
to three aspects – driveway throat width, driveway throat width with flare and number of divided
driveways. Figure 2 shows how throat width and throat width with flare measurements were
taken.

The maximum driveway density, 54.7, exists in a 1.17 mile-long corridor where a total of
64 driveways - 30 commercial and 34 residential - were counted. Many researchers recommend
20 to 30 driveways per mile as a maximum driveway density standard; above that standard,
accident rates may increase significantly. This standard applies to commercial driveways on
urban, multilane arterials with a posted speed limit of 35 miles per hour (22). In this data 17
corridors with an average of 45 mph posted limit have more than 30 driveways per mile. High
speed limits suggest lower driveway density if the roadway is primarily functioning toward
through traffic (i.e. higher movement demands are more important than the need for access).
Hence, some truck preferred arterial corridors may have safety compromises such as high
number of collision points and crash rate.

The functional area of an intersection includes the area beyond the physical junction of
two roadways that comprises decision and maneuvering distance, plus any required vehicle
storage length. Limiting or, when possible, eliminating driveways within the functional area of
an intersection (upstream and downstream) helps reduce crashes while traveling through an
intersection and reduces possible driver errors. It is important that the influence of any driveway
access should be minimized at the functional area of an intersection, as driveway traffic may
result in higher crash rates and increased congestion. According to the Manual of Uniform
Traffic Control Devices (Federal Highway administration, 2009), the crashes that occur within a
15 m to 152 m (50-500 feet) radius from the center point of an intersection are classified as
intersection-related crashes (23). In order to assess the safety impact of a driveway within an
intersection’s functional area, two variables were collected: minimum distance of a driveway to a
signalized intersection, and the total number of residential and commercial driveways that are
located within 500 feet of a signalized intersection. Figure 3 illustrates the number of driveways
that are located within the intersection’s functional area.
FIGURE 1 Roadway access related components.

Median opening width

Length of left turn bay

0.1 mile from an Intersection

Closest distance of a driveway to a signalized intersection
Generally there are three median types in use: a raised median, a painted median and a two-way left turn lane (TWLTL). Continuous TWLTLs are a common access management treatment when combined with driveway consolidation and corner clearance. TWLTLs provide a separate lane for vehicles turning into property access. In our study, only 23 out of 74 corridors have this kind of median treatment. Continuous raised medians with well-designed median openings are also common access management treatments, and are among the most important...
features when creating a safe and efficient highway system. Median openings should generally only be provided at public road intersections or at driveways shared by several businesses. The number of median openings should be kept to a minimum since they add conflict points and detract from safety. In this study, data for median opening width and the number of median openings for a roadway segment with raised medians was collected.

6 METHODOLOGY

Count-data modeling (Poisson, negative binomial) techniques are widely used for crash frequency as the number of accidents n_i on roadway segment per unit of time is a non-negative integer. When the variance is larger than the mean, the data is said to be overdispersed. Over-dispersed count data is usually modeled with a negative binomial distribution because the Poisson distribution has a restrictive assumption of equal variance and mean. In a Poisson model, the probability of the number of truck crashes for corridor i, n_i is as follows:

$$P(n_i) = \frac{\exp(-\lambda_i)\lambda_i^{n_i}}{n_i!}$$ \hspace{1cm} (1)$$

where $P(n_i)$ is the probability of a corridor i having n_i crashes and λ_i is the expected number of crashes in corridor i. The negative binomial model is an extension of the Poisson where the Poisson parameter λ follows a gamma probability distribution. The standard log link function for the negative binomial model can be expressed as a linear model of the covariates in Equation 2.

$$\lambda_i = \exp(\beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki}) \exp(\varepsilon_i)$$ \hspace{1cm} (2)$$

where βs are coefficients of explanatory variables and $\exp(\varepsilon_i)$ is the term adjusting for overdispersion and is gamma distributed. The models were estimated by using generalized linear modeling. For this modeling, STATA was used (24).

Generalized negative binomial (GNB) is a generalization of the negative binomial mean-variance structure where the over-dispersion parameter alpha (α) may also be parameterized specifically to account for the data heterogeneity. The GNB extends the negative binomial model by allowing user-specified parameterization of the ancillary parameter, α. There are two uses of the GNB model. First, parameterization of α provides information regarding which predictors influence overdispersion. Second, it is possible to determine whether overdispersion varies over the significant predictors of α by observing the differential values of its standard errors. If the standard errors vary only a little between parameters, the overdispersion in the model can be regarded as constant (25).

RESULTS

Given the importance of access data on arterial street traffic safety, manually collected access data elements were added to the model link function in addition to the available geometric and traffic data. This augmented data was expected to offer more explanation and prediction power to truck crashes. Pearson correlation test has been performed before the variables were put in the statistical models. After several iterations, the statistically significant variables were listed in Table 2. The Akaike information criterion (AIC) has been used as a statistical goodness-of-fit. The general formula is $AIC=2k - 2ln(L)$ where k is the number of parameters in the statistical model and L is the maximized value of the likelihood function for the estimated model. Column
3 & 4 represents t-value and 2-tailed p-value which are used for testing the null hypothesis. Coefficients having p-values less than alpha (.05) are statistically significant.

The design and location of commercial driveways, which are frequently used by trucks, appears to affect the safety performance of a corridor. Significant factors in crash frequency prediction include standard deviation of commercial driveway throat width, flared commercial driveway throat width and its standard deviation, proportion of divided commercial driveway, minimum distance of a driveway to the signalized intersection, signal density and shoulder width. Amongst all statistically significant variables, flared commercial driveway throat width, shoulder width, minimum distance of a driveway to the signalized intersection and proportion of divided commercial driveway are negatively associated with the number of truck crash prediction. These variables help to provide insightful, logical and meaningful explanation to the cause-effect relations of truck crashes.

TABLE 2 Negative Binomial Estimates for Crash Frequency Prediction

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>t-value</th>
<th>Pr ></th>
<th>t</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.0377</td>
<td>0.3119</td>
<td>9.74</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT (truck million miles traveled)</td>
<td>0.1033</td>
<td>0.0095</td>
<td>10.78</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation of driveway throat width (ft)</td>
<td>0.0475</td>
<td>0.0184</td>
<td>2.58</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average width of driveway with flare</td>
<td>-0.0111</td>
<td>0.0041</td>
<td>-2.70</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation of driveway width with flare</td>
<td>0.0143</td>
<td>0.0057</td>
<td>2.48</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of divided driveway, Commercial</td>
<td>-0.5748</td>
<td>0.2847</td>
<td>-2.03</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder width</td>
<td>-0.0428</td>
<td>0.0215</td>
<td>-1.99</td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal density</td>
<td>0.3324</td>
<td>0.0704</td>
<td>4.60</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>0.1611</td>
<td>0.0280</td>
<td>5.72</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC = 726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard negative binomial model is often criticized because of its fixed overdispersion parameter α. Researchers are keen to find the source of this overdispersion (26-27). Heterogeneous or GNB regression is a valuable method for assessing the source of overdispersion (25). GNB can be used to differentiate sources influencing the model parameter estimates from sources influencing overdispersion. Through overdispersion factor parameterization, predictors influencing the value of α, can be determined by establishing a functional relation between them, and estimated by including the function in the overall model estimation. It was hypothesized that AADT, TMT, signalized intersection density, driveway density, etc. may be contributing factors to α. Table 3 attempts to formulate the parameters as the sources of overdispersion including signal density, proportion of divided commercial driveway, and truck miles traveled. The significant variables of NB are statistically significant in GNB for the truck crash prediction. The AIC indicates that GNB yields a better goodness of fit than the NB model.
ANALYSIS AND DISCUSSION

Based on the model results it is apparent that the commercial driveway design components – not including the geometric features – are a very intriguing issue for the truck-preferred arterial corridors. The following section is an effort to enhance understanding of the findings that influence the occurrence of a crash either positively or negatively.

TABLE 3 GNB Estimates for Accident Frequency Prediction

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>t-value</th>
<th>Pr ></th>
<th>t l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.7659</td>
<td>0.30204</td>
<td>9.16</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>TMT (truck million miles traveled)</td>
<td>0.12508</td>
<td>0.01644</td>
<td>7.61</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Standard deviation of driveway throat width (ft)</td>
<td>0.05526</td>
<td>0.0171</td>
<td>3.23</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Average width of driveway with flare</td>
<td>-0.0086</td>
<td>0.00422</td>
<td>-2.03</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>Standard deviation of driveway width with flare</td>
<td>0.01638</td>
<td>0.00518</td>
<td>3.16</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Proportion of divided driveway, Commercial</td>
<td>-0.6893</td>
<td>0.29692</td>
<td>-2.32</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Shoulder width</td>
<td>-0.0588</td>
<td>0.01954</td>
<td>-3.01</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Signal density</td>
<td>0.30074</td>
<td>0.06639</td>
<td>4.53</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>ln(α) TMT</td>
<td>0.10707</td>
<td>0.04503</td>
<td>2.38</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Proportion of divided driveway, Commercial</td>
<td>-3.5114</td>
<td>1.43085</td>
<td>-2.45</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Signal density</td>
<td>0.577</td>
<td>0.2546</td>
<td>2.27</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-2.6737</td>
<td>0.63455</td>
<td>-4.21</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>AIC=718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial Driveway Design

An important component of access management involves managing traffic movements into and out of commercial driveways. The reason for this is that a large number of crashes on arterial streets involve commercial driveways. Commercial driveway width is important because it has a significant impact on the ease of entry into the driveway. A larger radius results in easier egress and ingress for passenger cars as well as commercial motor vehicles so that the driveway movement can be performed without abruptly slowing down or substantially encroaching into other roadway lanes and driveway lanes. The more quickly a vehicle can enter a driveway, the less likely there is a rear-end collision. According to the TRB Access Management Manual (21), simultaneous entry and exit by a single unit truck must have a driveway throat width of 40 feet. Our estimate indicates that 18 percent of corridors appear to have a higher number of crashes because they contain driveway throat width with flare less than 40 feet and 38 percent of corridors have a lower number of crashes because they contain driveway width with flare greater than 40 feet. Varying width (standard deviation of throat width and throat width with flare) leads to a situation where the driver is not guided to the best position for driveway movements. In this case, pavement marking becomes vital to guide the driver toward the entering the road.
Signalized Intersection Density

Although most discussions about access management focus on the management of private driveways, proper spacing of signalized intersections is an equally important issue. The importance of intersection spacing is similar to that of driveway spacing; as the number of intersections per mile increase, the opportunity for crashes increases. The existence of too many intersections per mile also increases delay and congestion. Stover and Gluck (18, 28) reported that crash rates increase as the number of signalized intersections per segment increases. The average crash rate can be increased by up to 200 percent when the signal density along a given segment is increased from two to four signals per mile, depending on the number of un-signalized access points along the same segment (21). To test the findings of the previous literature, a sensitivity analysis was performed to capture the impact of the signalized intersection density. Figure 4 shows that crash density increases exponentially with the increase of signal density. Thus, for higher values of signal density, crash density will increase at a higher rate than for lower values of signal density.

Comparison between Two Models

The addition of the access-related variables led to different results from the previously selected corridors (6) as illustrated in Table 4. AADT, PSI and its standard deviation are no longer statistically significant for predicting truck crashes. One of the interesting findings of this study is that the presence of more relevant variables can nullify the effect of statistically significant variables that are less relevant. Under the guided data collection, the access variables represent a relationship between truck crashes and access design and management. This relationship not only displays the statistically significant correlation between truck-related crashes on arterials and access management but corrects the spurious causality between crashes. An inappropriate
choice can create statistical artifacts. The statistical artifact is a difficult issue to address because it can be caused by the choice of faulty variables or function misspecification. A well designed data collection guided by the appropriate knowledge of highway safety can mitigate the negative impact of statistical artifacts.

The negative sign of the PSI coefficient suggests that the probability of a crash occurrence becomes higher on distressed pavement. One could argue that a poor pavement condition caused by rutting, potholes, failures and cracking forces drivers to be more wary and travel slower, resulting in fewer crashes or less severe injuries. Smoother pavements may allude to faster driving conditions and consequently higher driving speeds, which increase the probability of frequency and the severity of a crash. One can also argue that poor pavement condition causes drivers to swerve or stop in order to avoid damage to the vehicle, therefore compromising one’s safety. The dilemma exists because the variable can be confounded with other unobserved or unavailable factors such as driver behavior. The solution can be difficult without a good understanding of how the variables interact with one another. Unavailable data could be an additional difficulty. The alternative is to seek new variables without ambiguous influence on safety. In this study, the added commercial driveway design data gives more insight and logical explanation to the truck crash without comprising the statistical goodness-of-fit.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Without Access Data</th>
<th>With Access Data</th>
<th>Final Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.75 (11)</td>
<td>2.93 (7.6)</td>
<td>3.03 (9.74)</td>
</tr>
<tr>
<td>TMT</td>
<td>0.84 (10.2)</td>
<td>0.095 (9.36)</td>
<td>0.103 (10.78)</td>
</tr>
<tr>
<td>Annual Average Daily Traffic</td>
<td>0.023 (2.54)</td>
<td>0.017 (1.74)</td>
<td>—</td>
</tr>
<tr>
<td>Shoulder width</td>
<td>-0.042 (-2.24)</td>
<td>-0.035 (-1.67)</td>
<td>-0.043 (-1.99)</td>
</tr>
<tr>
<td>Pavement Serviceability Index (PSI)</td>
<td>-0.212 (-3.53)</td>
<td>-0.0363 (-0.44)</td>
<td>—</td>
</tr>
<tr>
<td>STD of (PSI)</td>
<td>0.26 (2.27)</td>
<td>0.174 (1.37)</td>
<td>—</td>
</tr>
<tr>
<td>Signal density</td>
<td>.186 (2.95)</td>
<td>0.273 (3.72)</td>
<td>0.332 (4.60)</td>
</tr>
<tr>
<td>Standard deviation of driveway throat width (ft)</td>
<td>—</td>
<td>0.045 (2.47)</td>
<td>0.047 (2.58)</td>
</tr>
<tr>
<td>Average width of driveway with flare</td>
<td>—</td>
<td>-0.011 (-2.48)</td>
<td>-0.011 (-2.70)</td>
</tr>
<tr>
<td>Standard deviation of driveway width with flare</td>
<td>—</td>
<td>0.015(2.59)</td>
<td>0.014 (2.48)</td>
</tr>
<tr>
<td>Proportion of divided driveway, Commercial</td>
<td>—</td>
<td>-0.626 (-2.14)</td>
<td>-0.575 (-2.03)</td>
</tr>
<tr>
<td>Dispersion</td>
<td>0.18 (6.67)</td>
<td>0.152 (5.68)</td>
<td>0.161 (5.72)</td>
</tr>
<tr>
<td>AIC</td>
<td>966</td>
<td>728</td>
<td>726</td>
</tr>
</tbody>
</table>

Underlined variables are not significant in the model at 5% significance level.
1. Results from a previous study (6)
2. Final model includes only the statistically significant variables
CONCLUSION

The fundamental differences between freeways and arterials are access control and mobility. Arterial streets connect facilities and properties with the freeways to ensure a successful and timely delivery. This process involves planning the location, spacing of driveways, median openings, interchanges, and street connections to an arterial street, in addition to appropriate spacing of traffic signals and efficient operation of a variety of traffic controls. Proper access management has been found to achieve significant improvements in roadway operations and safety, reducing crash frequency by as much as 60 percent (29). 90% of truck operators in a south Florida study estimated that access management improvements improved safety (30).

The main objective of this study was to quantify the safety impact of access parameters on truck-preferred arterial corridors. In addition to existing traffic, geometric and pavement variables, several access related variables were collected manually for the pursuit of having more comprehensive and complete information about truck crash occurrence. Negative binomial regression analysis was used to establish the relationships between truck crashes and arterial street characteristics. Along with driveway design configuration, minimum distance from a driveway to a signalized intersection, signalized intersection density, shoulder width and standard deviation of left turn bay ended up being statistically significant variables for predicting truck crashes. Annual average daily traffic, pavement serviceability index and its standard deviation were no longer statistically significant variables after introducing the access related variables (6).

One challenge facing the current crash model development is the data heterogeneity due to the fact that crash data are usually obtained at different times across a wide range of geographical locations. In order to overcome the standard negative binomial model’s fixed overdispersion parameterization, a GNB regression method was used for assessing the source of overdispersion. The same variables are statistically significant for the truck crash prediction; though the magnitude changed, the signs are consistent and interpretations are also the same.

Finally, the variables that caused the overdispersion of the study data are the million miles traveled by truck, signal density and proportion of divided commercial driveways. The AIC indicates that GNB yields a better goodness of fit than the NB model. The addition of access related variables appears to provide a reasonable explanation of the relationship of truck crashes, and it nullifies a few variables that were statistically correlated with the number of crashes in previous models. The change in statistical significance of these variables may suggest a statistical artifact which can be corrected by including more appropriate variables or by improving model specification.

ACKNOWLEDGEMENT

This work was sponsored by the National Center for Freight & Infrastructure Research & Education (CFIRE) at the University of Wisconsin-Madison.

REFERENCES

17. Squires, C. A., and P. S. Parsonson. Accident Comparison of Raised Median and Two-Way Left-Turn Lane Median Treatments. In Transportation Research Record: Journal of the...
17

Transportation Research Board, Transportation Research Board of the National Academies,

Proceedings of the 8th National Conference on Access Management, Baltimore, MD, July

Dispersion Parameter, Functional Form, and Bayes versus Empirical Bayes Methods. In
Transportation Research Record: Journal of the Transportation Research Board, No. 1407,

28. Stover, V. Signalized Intersection Spacing. Transportation Research Institute, 1996.

30. Access Management: Balancing Access and Mobility. Florida Department of Transportation.
on February 27, 2012.