Injury Outcomes and Costs for Work Zone Crashes

John S. Coburn
Graduate Research Assistant
Traffic Operations and Safety (TOPS) Laboratory
Department of Civil and Environmental Engineering
University of Wisconsin-Madison
1415 Engineering Drive, Room 1241
Madison, WI, 53706
Phone: 1 (402) 301-5507
Email: jscoburn@wisc.edu

Andrea R. Bill
Associate Researcher
Traffic Operations and Safety (TOPS) Laboratory
Department of Civil and Environmental Engineering
University of Wisconsin-Madison
1415 Engineering Drive, Room B243
Madison, WI, 53706
Phone: 1 (608) 890-3425
Email: bill@wisc.edu

Madhav V. Chitturi, Ph.D.
Assistant Researcher
Traffic Operations and Safety (TOPS) Laboratory
Department of Civil and Environmental Engineering
University of Wisconsin-Madison
1415 Engineering Drive, Room B243
Madison, WI, 53706
Phone: 1-608-890-2439
Email: mchitturi@wisc.edu

David A. Noyce, Ph.D, P.E.
Professor
Traffic Operations and Safety (TOPS) Laboratory
Department of Civil and Environmental Engineering
University of Wisconsin-Madison
1415 Engineering Drive 1204
Madison, WI 53706
Phone: 1 (608) 265-1882
Email: noyce@engr.wisc.edu

Submission date: 11/15/2012
4255 Words, 6 Tables, 2 Figures
ABSTRACT

The main objective of this research was to quantify the injury outcomes and develop reliable and comprehensive injury costs for work zone crashes based on crash type (rear-end, head-on, etc.) and crash severity (KABCO scale). A three-step methodology was used to quantify the comprehensive crash costs. All crashes in Wisconsin between 2001 and 2010 that were marked with a construction zone flag were identified and used in this analysis. The Wisconsin Crash Outcome Data Evaluation System (CODES) database provided comprehensive injury costs based on the injury types and severities suffered by participants in study crashes. KABCO and Maximum Abbreviated Injury Score (MAIS) ratings were similar for PDO and Possible Injuries. A vast majority of non-incapacitating and incapacitating injuries sustained minor or moderate injuries only suggesting that use of KABCO needs to be reconsidered. The calculated comprehensive costs for crash types with sufficient sample sizes were found to be up to 105%, 35%, and 50% larger than the default Federal Highway Administration values for incapacitating, nonincapacitating, and possible injury crashes, respectively. Injury crash costs for different crash types varied significantly, indicating that developing crash-specific costs could result in more accurate benefit-cost analysis for the implementation of countermeasures.
INTRODUCTION

Aging infrastructure, the need to increase capacity, and the desire to improve safety are all reasons why work zones are necessary on our roads today. Work zones often violate the expectancy of motorists by introducing new driving patterns (including merging lanes or median weaves), which make drivers feel work zones are more hazardous than other roads (1). Between 2006 and 2010, the trend of crash fatalities per year has been downward, as shown in TABLE 1 (2). On the contrary, the percentage of work zone fatalities compared to all roadway fatalities in Wisconsin has been slightly increasing per year. To reverse this upward trend and improve work zone safety, the Strategic Highway Safety Plan recommends implementing countermeasures such as reducing the duration of work activities, improving traffic control devices, or enhancing driver education and enforcement efforts (3).

TABLE 1 Work Zone Fatal Crash History, 2006-2010 (2)

| Year | United States | | Wisconsin | |
|------|---------------|---------------|------------|
| | Total Fatalities | Work Zone Fatalities | Total Fatalities | Work Zone Fatalities |
| 2006 | 42,708 | 1004 (2.4%) | 724 | 14 (1.9%) |
| 2007 | 41,259 | 831 (2.0%) | 756 | 11 (1.5%) |
| 2008 | 37,423 | 716 (1.9%) | 605 | 8 (1.3%) |
| 2009 | 33,883 | 680 (2.0%) | 561 | 13 (2.3%) |
| 2010 | 32,863 | 576 (1.8%) | 571 | 14 (2.5%) |

Benefit-cost analysis compares the benefits (expressed as a monetary value) associated with a countermeasure with the cost of implementation, and allows engineers to prioritize strategies to optimize the return on investment (4). For any benefit-cost analysis, crash costs are very important. The current practice of using the Federal Highway Administration (FHWA) default values for a given crash severity for all crash types does not truly capture the costs of crashes because:

1. Crash severity is based on the KABCO scale (K: Killed; A: Incapacitating Injury; B: Non-incapacitating Injury; C: Possible Injury; and O: Property-Damage-Only) as determined by the responding police officer on the scene. The main role of the police officer is to clear the crash scene, not to evaluate the injury severity of crash participants.

2. Past research has found that the KABCO scale does not effectively analyze the threat to life and actual injury outcome as measured by the Maximum Abbreviated Injury Score (MAIS) (5, 6).

3. The costs of injuries of all participants are not considered. Rather, the most severe injury outcome is used for assigning a cost.

In 1992, the National Highway Traffic Safety Administration (NHTSA) issued a Request for Proposals to develop a system that links crash data to hospital data. The goal...
was to better understand the costs associated with crashes. The Crash Outcomes Data Evaluation System (CODES) was developed to evaluate the impact of factors such as driver behavior, safety equipment, vehicle factors, and crash configuration, on health outcomes (7). Overall, CODES gives a complete picture of the crash cost by providing injury outcome, maximum abbreviated injury score, and cost for each participant in the crash (8).

By utilizing CODES data in work zones, more realistic cost estimates can be produced, which should allow better countermeasure benefit-cost analysis and improve safety.

WORK ZONE LITERATURE REVIEW

There are many previous studies of work zones and the factors that ultimately lead to crashes. While some results, such as predominant crash type in work zones, are mostly consistent among past literature, others have only minimal research or contradictory findings. Results of the literature review are summarized in Table 2.

TABLE 2 Selected work zone study results regarding crash statistics, adapted from (9)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Findings</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predominant Crash Type</td>
<td>Rear-end crash most predominant- (10-20)</td>
<td>Consistent Results</td>
</tr>
<tr>
<td>Collision during nighttime</td>
<td>Fixed Object Crashes most common - (15)</td>
<td>Consistent Results</td>
</tr>
<tr>
<td></td>
<td>Fixed Object more likely to be hit at night - (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-vehicle crashes dominant - (1, 15)</td>
<td></td>
</tr>
<tr>
<td>Light Conditions</td>
<td>Crashes during night more severe - (13)</td>
<td>Inconsistent Results</td>
</tr>
<tr>
<td></td>
<td>Crashes during daylight more severe - (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neither daytime nor nighttime crashes were more common - (19)</td>
<td></td>
</tr>
<tr>
<td>Crash Location</td>
<td>Rural fatal crashes were more common - (1, 21)</td>
<td>Inconsistent Results</td>
</tr>
<tr>
<td></td>
<td>Urban crashes were more common - (22)</td>
<td></td>
</tr>
<tr>
<td>Roadway Type</td>
<td>Fatal crashes more common on Interstate Highways and State Highways than other roads - (19)</td>
<td>Limited Study Information</td>
</tr>
</tbody>
</table>

What is a “defined” work zone?

The definition of a crash in a work zone varies from state to state. For example, Wisconsin considers a crash work zone related if the crash is “resulting from an activity, behavior, or traffic control related to a construction zone but not necessarily within it” (23). A research report by the Michigan Department of Transportation suggests that officers should identify a crash as a work zone crash “if the location of the accident is within a designated or posted construction zone” (24). Wang et al. recommend (and agree with the Wisconsin methodology) to include all crashes related to work zones (25). However, some reporting confusion remains, as police officers may consider a crash as
work zone-related only if construction is happening at the time of the crash, or within the
designated work zone (versus pre-work zone queue), thus removing data from analysis.

CRASH OUTCOME DATA EVALUATION SYSTEM (CODES)

CODES is a national effort overseen by NHTSA to amass financial and medical outcome
data for motor vehicle crashes (8). To enable better benefit-cost decision making for
highway safety, CODES provides data on crash injury type, severity, and other associated
costs.

To assemble each state’s CODES database, crashes are probabilistically linked to
medical, driver, and other records to provide comprehensive cost data for each injured
and uninjured crash participant. Using the probabilistic linkage method instead of an
exact linkage method allows record linkage if a name was misspelled, the birthday was
incorrectly recorded, or even if the dataset did not have names (7). The hospital charges
resulting from the probabilistic linkage do not capture all medical costs and are
consistently lower than medical costs. Charges also do not explain non-medical costs
associated with crashes, including property-damage and quality-of-life costs.

A study by Zaloshnja et al. compiled national injury costs, which are used in
CODES, based on the body part injured, the presence of a fracture, and the severity of the
injury on the MAIS scale (26). The three types of injury costs in this report are:

- Medical Costs: ambulance, emergency medical, doctor, hospital, rehabilitation,
 medication, and special treatment cost;
- Quality-of-Life Costs: based on quality-adjusted life years (QALYs), which
 account for the loss of quality of life due to an injury and fatality with a 2000
 monetary value of $91,752, which was determined by dividing the statistical
 value of a life by a life span; and,
- Other Costs: emergency services, lost wages, household work, insurance
 administration, legal costs, and property damage (26).

Injury and cost data accumulated in the CODES database for each participating
state have been used in a wide variety of safety analyses. Examples include the
determination of the sensitivity of injury costs on identifying high crash locations in Iowa
(27), and the estimation of comprehensive crash costs for roadway departure crashes in
Wisconsin (28, 29), Massachusetts (30), and Maine (31).

DATA COLLECTION

Data used in this study was collected from two major sources: WisTransPortal (the
system that provides support for ITS data archiving, real-time traffic information services
and transportation research in the State of Wisconsin) (32) and CODES Data provided by
the Center for Health Systems Research and Analysis at the University of Wisconsin-Madison (33).

Work-Zone Crash Data Collection

WisTransPortal, which is maintained by the Traffic Operations and Safety Laboratory (TOPS Lab) at the University of Wisconsin-Madison, includes a database of all police-reported traffic crashes in the state of Wisconsin where someone was either killed, injured, or the property damage exceeds a $1,000 threshold. WisTransPortal hosts local copies of all crash reports in the state after 1994. The database was queried to return crashes flagged as work zone-related (by field “CONSZONE”). To identify a large enough scope for this project, crash data between the years 2001 and 2010 was analyzed.

TABLE 3 Manner of Collision for Wisconsin Work Zone Crashes by Maximum Injury Severity, 2001-2010

<table>
<thead>
<tr>
<th>Manner of Collision</th>
<th>Fatality K</th>
<th>Injury A</th>
<th>Injury B</th>
<th>Injury C</th>
<th>PDO</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear-End</td>
<td>17 – 0.3%</td>
<td>164 – 2.4%</td>
<td>499 – 7.4%</td>
<td>1967 – 29.0%</td>
<td>4128 – 61.0%</td>
<td>6775</td>
</tr>
<tr>
<td>Collision with Fixed Object</td>
<td>48 – 1.0%</td>
<td>223 – 4.7%</td>
<td>650 – 13.8%</td>
<td>566 – 12.0%</td>
<td>3234 – 68.5%</td>
<td>4721</td>
</tr>
<tr>
<td>Angle</td>
<td>22 – 0.7%</td>
<td>123 – 3.9%</td>
<td>371 – 11.9%</td>
<td>670 – 21.4%</td>
<td>1941 – 62.1%</td>
<td>3127</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>6 – 0.3%</td>
<td>42 – 1.7%</td>
<td>112 – 4.4%</td>
<td>252 – 9.9%</td>
<td>2134 – 83.8%</td>
<td>2546</td>
</tr>
<tr>
<td>Head-On</td>
<td>6 – 2.5%</td>
<td>29 – 11.9%</td>
<td>58 – 23.9%</td>
<td>63 – 25.9%</td>
<td>87 – 35.8%</td>
<td>243</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>2 – 1.2%</td>
<td>6 – 3.6%</td>
<td>8 – 4.8%</td>
<td>33 – 19.9%</td>
<td>117 – 70.5%</td>
<td>166</td>
</tr>
</tbody>
</table>

As seen in Table 3, the most common crash type in Wisconsin work zones between 2001 and 2010 was rear-end collisions (38.5%), which correlates with conclusions found in previous research. The next largest classifications include fixed object (26.9%), angle (17.8%), sideswipe (14.5%), and head-on crashes (1.4%). The data in Table 3 was organized by crash severity to highlight trends including:

- The large proportion of Injury A and Injury B head-on crashes when compared to other head-on crash severities
- Collisions with fixed objects were the most frequent manner of collision for crash severities Fatality, Injury A, and Injury B among all crash types

Further analysis discusses injury severity, which is different from the aforementioned crash severity. Crash severity is the same for all participants in a crash, and represents the most severe outcome of the participants. Injury severity is assigned to
each participant based on the injury that was sustained. Both crash severity and injury severity use the KABCO scale.

CODES Data Collection
The Wisconsin CODES Database maintains complete injury, vehicle, and medical information (for linked injuries) for each crash participant. CODES records are created during a visit to an emergency room, but do not account for medical visits more than 30 days after a crash. With the Wisconsin CODES having limited ability to explain non-medical costs (such as property damage), the FHWA default value ($10,956 in 2010 dollars) was assumed to be representative for PDO costs; further PDO analysis in this paper has been excluded.

Data Linkage
Each record in the CODES database links to the WisTransPortal crash data by means of a unique crash number identifier, which allows a one-to-many query that enables the two databases to be linked at the participant level. When a valid diagnostic code was present, the data was considered “linked”. The proportion of injuries able to be linked by severity is found in Table 4. Although the goal is to have every crash linked to hospital records, that is not possible due to missing information, incorrect data fields, or if the crash was PDO.

TABLE 4 CODES Crash Injury Linkage Percentage, Work Zone Crash Participants

<table>
<thead>
<tr>
<th>Injury Severity</th>
<th>Injured Crash Participants</th>
<th>Linked Crash Participants</th>
<th>Linkage Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Killed (K)</td>
<td>116</td>
<td>29</td>
<td>25.0%</td>
</tr>
<tr>
<td>Incapacitating Injury (A)</td>
<td>754</td>
<td>522</td>
<td>69.2%</td>
</tr>
<tr>
<td>Non-incapacitating Injury (B)</td>
<td>2346</td>
<td>1142</td>
<td>48.7%</td>
</tr>
<tr>
<td>Possible Injury (C)</td>
<td>5512</td>
<td>1522</td>
<td>27.6%</td>
</tr>
<tr>
<td>Total Injuries</td>
<td>8728</td>
<td>3215</td>
<td>36.8%</td>
</tr>
</tbody>
</table>

The least likely injury linkage occurred with possible injuries (“C”). For participants with minor injuries, the wounds are much less severe, are often not visually apparent at the crash site, and generally do not require a trip to an emergency room. Some examples of minor injuries include reporting a momentary loss of consciousness, limping, or complaint of pain (34).

MAIS & KABCO Injury Scales
The MAIS Score, assigned by a medical professional, assigns severity ratings similar to the KABCO scale. However, there often are discrepancies between a police officer’s judgment of a participant’s injury and a medical practitioner’s assessment. Based on the work zone crash data, police officers were rather precise in identifying minor injuries...
labeled as “C” (90%), but variance increased as injury severity increased, as shown in Table 5.

TABLE 5 Cases (and Percent) of each KABCO participant falling into each MAIS Class, Wisconsin Work Zone Crashes, 2001-2010

<table>
<thead>
<tr>
<th>MAIS Score</th>
<th>KABCO Scale</th>
<th>MAIS Injury Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>1 (Minor)</td>
<td>294 (93%)</td>
<td>1207 (90%)</td>
</tr>
<tr>
<td>2 (Moderate)</td>
<td>18 (6%)</td>
<td>113 (8%)</td>
</tr>
<tr>
<td>3 (Serious)</td>
<td>2 (<1%)</td>
<td>14 (1%)</td>
</tr>
<tr>
<td>4 (Severe)</td>
<td>0 (0%)</td>
<td>6 (<1%)</td>
</tr>
<tr>
<td>5 (Critical)</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>6 or Killed</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Missing Score</td>
<td>38922</td>
<td>3959</td>
</tr>
<tr>
<td>Total</td>
<td>314</td>
<td>1341</td>
</tr>
</tbody>
</table>

Note: Killed refers to coding of “fatal”, no matter the value of MAIS.

Over three-fourths (78%) of “B” crash participants actually sustained only minor injuries (MAIS score of 1). About two-thirds (66%) of “A” crash participants sustained only minor or moderate injuries (MAIS 1 and 2). Essentially, this presents a strong argument against using the KABCO scale to assign comprehensive costs, as the presence of numerous minor injuries in incapacitating crashes could bias calculated costs. Previous research has both argued for (35) and against (5) the use of KABCO as a crash-severity indicator, which suggests that additional research is needed regarding the use of the KABCO scale and considering the use of a different scale such as MAIS.

With the current emphasis on reducing fatalities and severe injury (K+A) crashes nationwide (not only in work zones), the data in TABLE 5 suggests that using KABCO ratings for identifying locations for safety improvements may not be the best approach. The over-reporting of severe injuries caused by inaccurate judgment could prevent the attainment of nationwide safety goals, such as the reduction of severe crashes in work zones.

Other comparisons between KABCO and MAIS assignments can be found in previous papers (29, 35, 36). The results in those papers followed the same general trend of the Wisconsin dataset – good concurrency between MAIS and KABCO for “O” and “C” crashes, and scattered results for “A” injuries.

METHODOLOGY

This paper uses a methodology that was developed by Chitturi et al. (29) and Ooms (36). The methodology differs from guidelines in the Federal Highway Administration report “Crash Cost Estimates by Maximum Police-Reported Injury Severity within Selected Crash Geometries” that stipulate that a single, default cost be assigned for the differing crash severities of fatal, injury, and property-damage-only, irrespective of the number of participants in the crash (37). Methodology consists of multiplying the average number of
participants by the average injury costs for each injury severity (i.e., five levels of KABCO), followed by summing these costs to obtain an overall crash cost for the crash severity, as shown in the following equation:

\[
\text{crash cost}_{t,c} = \sum_{all} (\text{Average number of injuries})_{t,c,i} \times (\text{Average injury cost})_{t,i}
\]

Where:

- \(t \): analyzed crash type (i.e. all work-zone crashes, work-zone crashes on county roads);
- \(c \): crash severity (Fatal, Injury, Property-Damage-Only); and,
- \(i \): injury severity (KABCO scale)

Therefore, three steps are needed to determine the overall crash cost for each analyzed crash type and severity:

1. Average number of participants for each injury severity per crash
2. Average injury severity cost using CODES data
3. Average crash cost by crash severity

To provide more precise analysis, CODES costs were adjusted for inflation by using data from the United States Department of Labor website. The inflation rates were calibrated by location (Wisconsin) and item (medical costs), and adjusted to reflect 2010 values (38). A more detailed explanation of the methodology can be found in previous papers (29, 36, 39).

WORK-ZONE COST ANALYSIS

As stated in the methodology, the first step is to find the average number of participants for each injury severity per crash. For incapacitating crashes (INJ A) in the dataset, the average number of participants would be the sum of the following averages: 0.00 fatal participants (since there were no deaths), 1.22 INJ A participants, 0.28 INJ B participants, 0.23 INJ C participants, and 1.17 non-injured participants. Thus, the expected number of persons, on average, involved in an incapacitating work zone crash is 2.91. The total number of participants per crash is shown in Figure 1.
FIGURE 1 Average Number of Participants per Work Zone Crash by Manner of Collision.

*Note: Rear-End/Fatality and Sideswipe/Fatality values represent limited sample sizes (less than 20 data points); use with caution.

The crash type that had the most participants per crash, on average, was rear-end collisions. The high average number of participants could be explained by a large number (1601 crashes) of rear-end collisions involving three or more vehicles. As fixed-object collisions only include a single car, the average number of participants involved was very low as compared to the other crash types.

Average Injury Cost using CODES Data

The second step involved finding the average injury cost. Analyzing incapacitating, non-incapacitating, and possible injury crash participants with sufficient sample sizes gives the following averages, minimums, and maximums of linked CODES injury costs, per crash type are presented in Table 6. Due to smaller sample sizes, fatal crashes have been excluded from further analysis.
TABLE 6 Average Injury Cost per Crash Participant

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>Incapacitating (INJ A)</th>
<th>Non-incapacitating (INJ B)</th>
<th>Possible Injury (INJ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Work-Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$402K</td>
<td>$10.8K</td>
<td>$6.12M</td>
</tr>
<tr>
<td></td>
<td>522 Participants</td>
<td>1142 Participants</td>
<td>1522 Participants</td>
</tr>
<tr>
<td>Rear-End</td>
<td>$252K</td>
<td>$10.9K</td>
<td>$4.47M</td>
</tr>
<tr>
<td></td>
<td>135 Participants</td>
<td>329 Participants</td>
<td>734 Participants</td>
</tr>
<tr>
<td>Fixed-Object Collision</td>
<td>$523K</td>
<td>$11.0K</td>
<td>$6.12M</td>
</tr>
<tr>
<td></td>
<td>190 Participants</td>
<td>388 Participants</td>
<td>221 Participants</td>
</tr>
<tr>
<td>Angle</td>
<td>$326K</td>
<td>$10.8K</td>
<td>$4.68M</td>
</tr>
<tr>
<td></td>
<td>103 Participants</td>
<td>284 Participants</td>
<td>381 Participants</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>$541K</td>
<td>$10.9K</td>
<td>$4.47M</td>
</tr>
<tr>
<td></td>
<td>40 Participants</td>
<td>73 Participants</td>
<td>117 Participants</td>
</tr>
<tr>
<td>Head-On</td>
<td>$399K</td>
<td>$12.0K</td>
<td>$4.43M</td>
</tr>
<tr>
<td></td>
<td>47 Participants</td>
<td>62 Participants</td>
<td>15 Participants</td>
</tr>
</tbody>
</table>

“M” represents $1,000,000, and “K” represents $1,000;

Note: Head-On/INJ C values represent limited sample sizes (less than 20 data points); use with caution.

The average injury costs per crash participant in TABLE 6 can be used to:

- Find the comprehensive crash cost in conjunction with the results from Step 1;
- Show the wide difference between incapacitating costs compared to non-incapacitating and possible injury costs; and,
- Illustrate the large ranges present for nearly each injury cost.
Comprehensive Crash Cost Analysis

To find the comprehensive crash costs, the average number of participants per crash is multiplied by the average injury cost per crash participant and severity type to receive the comprehensive crash cost. As mentioned previously, the default value of $10,956 will be used for PDO crash costs computations. For example, the following equation details the computation for incapacitating crashes in work zones.

\[(0.00)_K + (1.22 \times \$402,000)_{INJ\,A} + (0.28 \times \$94,200)_{INJ\,B} + (0.23 \times \$49,000)_{INJ\,C} + (1.17 \times \$10,956)_{PDO} \approx \$542,553\]

The most expensive crash type based on the dataset was head-on collisions. However, due to a large per-injury cost for INJ C head-on collisions (based on a sample size of only 15 data points), this data may be skewed, and should be used with caution.

The incapacitating injury crashes demonstrated a much higher standard deviation ($176,571, not including “All Work Zone” crash and FHWA values) compared to non-incapacitating and possible injury standard deviations ($53,960 and $56,446, respectively).

Comprehensive crash costs for incapacitating crashes (with sufficient sample size) were 20% to 105% greater than the default values, after adjusting for inflation. For nonincapacitating crashes, calculated costs were between 6% and 35% larger than the

FIGURE 2 Comprehensive Crash Costs for Wisconsin Work Zone Crashes by Injury Severity and Crash Type, 2001-2010

*Note: Head-On crash values represent limited sample sizes (less than 20 data points); use with caution.
FHWA values, and possible injury crashes costs were 0.3% to 50% higher compared to the default values.

Weighted overall injury cost for all work zone crashes is about 25% greater than the FHWA cost. Interestingly, the weighted rear-end overall injury cost (based on the number of crashes per severity) was 11% smaller than the inflation-adjusted FHWA cost, due to the large number of minor rear-end collisions. FIGURE 2 also shows that the overall injury costs vary significantly between different crash types. For instance head-on crashes are over three times as expensive as a rear-end crash. Similarly, fixed object crashes are about twice as expensive as a rear-end crash. The wide range of costs in FIGURE 2 suggests that developing scenario-based cost estimates for each crash type would improve future benefit-cost analysis for work zone countermeasure implementation.

CONCLUSION

The main objective of this research was to quantify the injury outcomes and develop reliable and comprehensive injury costs for work zone crashes in Wisconsin. All crashes that were caused by the presence of a work zone between 2001 and 2010 were identified and used for this analysis. The Wisconsin CODES database provided comprehensive injury costs based on injury types and severities suffered by participants in study crashes. A three-step methodology was used to quantify the crash costs for each severity and manner of collision (rear-end, angle, etc.).

Injury severities of crash participants based on the KABCO scale (assigned by law enforcement personnel) were compared to MAIS scores assigned by medical practitioners. Participants in property-damage-only and possible injury crashes were assigned very similar rankings between the two scales. However, for non-incapacitating and incapacitating injuries the disparity between KABCO and MAIS ratings was very significant. Vast majority of crash participants classified as injury A or B sustained only minor or moderate injuries. Therefore, there is a need to reconsider the use of KABCO scale.

Average comprehensive crash costs were found to be $542,533 for incapacitating crashes in work zones, $147,536 for non-incapacitating crashes, and $86,943 for possible injury crashes. Fatal crash costs were excluded due to small sample sizes, and property-damage-only crashes were assigned the FHWA default PDO crash value of $10,956 (in 2010$). Incapacitating, nonincapacitating, and possible injury crashes (with sufficient sample size) were 105%, 35%, and 50% larger than inflation-adjusted FHWA default values, respectively.
Weighted overall injury cost for all work zone crashes is about 25% greater than
the FHWA cost. Head-on crashes and fixed object crashes were about three and two
times as expensive as rear-end crashes respectively.

The variance of comprehensive crash costs for each crash type suggests that a
“one-size-fits-all” FHWA value for crash cost cannot accurately represent every work
zone crash. By using more detailed and crash-specific costs, benefit-cost analyses for
implementing safety countermeasures that address particular crash types will be more
accurate.

FUTURE RESEARCH
For future CODES analysis, the investigation of other crash factors should be completed
to create even more specific comprehensive costs for work zone crashes. Some factors to
study include:

- Roadway type (interstate highway, state highway, county highway, local road)
- Light conditions (daylight, dark, lit overnight work zone, etc.)

Connecting CODES data to certain characteristics of work zones (such as lanes
closed, or type of work being done) can provide an additional wealth of information.
Current research is being performed to do that, and future iterations of CODES analysis
could include work zone type identified by the Wisconsin Lane Closure System (40).

Finally, analyzing comprehensive crash costs in terms of the MAIS scale instead
of the KABCO scale will provide a different perspective, and possibly more reliable
values.
ACKNOWLEDGEMENTS

The authors greatly acknowledge support of this study from the Wisconsin Department of Transportation, including Larry Corsi from the Bureau of Transportation Safety, and Rebecca Szymkowski from the Bureau of Traffic Operations. The authors are also grateful to Wayne Bigelow from the Center for Health Systems Research and Analysis and Richard Miller from the Wisconsin Department of Health Services for providing the CODES Data.
REFERENCES

15. Ha, T., and Z. A. Nemeth. Detailed study of accident experience in construction and maintenance zones. In Transportation Research Record: Journal of the Transportation Research Board, No. 1509, Transportation Research Board of the
Coburn, J.S.; Bill, A.R.; Chitturi, M.V.; Noyce, D.A.

17. Finison, K. S. Analysis of 1996 Maine Crashes Involving Vehicles that Ran Off

