Performance Management in the Private Sector

December 16, 2013

Dan Krechmer, Cambridge Systematics
• Private Sector Examples
 – WalMart – Reduced costs through change in shipping method
 – United Airlines – Operational savings by providing pilots with real time weather information
 – Samsung – Reduce manufacturing time and cost by using metrics for each step in cycle
 – Clorox – Developed production planning algorithm based on demand and inventory data to manage inventory and streamline manufacturing process
 – Connected Vehicle Data – New technology with multiple uses
Walmart – Environmental Footprint

– Use logistics analysis to reduce environmental footprint

– Goals
 • 100% renewable energy
 • Zero environmental waste
 • Sustainable products

– Crate/rack system used for shipping milk provided opportunity for savings
 • Evaluation of storage and shipping cost data led to use of crateless containers
 • 9% reduction in volume reduced number of trips translated to $0.20 per gallon cost reduction
United Airlines

• United Airlines
 – August 2011 initiated program to provide all pilots with iPad dedicated to real-time weather and navigation information
 – 1.5 pound device replaced 38 pound flight bags with paper data
 – iPads provide real-time weather data superimposed on flight route
 • 15 minute forecasts
 – Air Traffic Control previously routed planes entirely around adverse weather
 • Pilots able to use data to suggest more direct routes
 • Proactive approach to routing
United Airlines (continued)

- Impacts
 - Reduced maintenance due to weather-related damage
 - Fewer turbulence-related injuries
 - Faster flight times = improved customer service
 - Reduced fuel costs due to shorter flight paths
 - 25 minute time savings translates to 2100 pounds of fuel saved
• Samsung
 – Use of data for operational optimization of silicon wafer production
 • Break into components of cycle time
 – Wafer fabrication
 – Intermediate sorting
 – Assembly
 – Testing
 • Schedules intermediate goods for specific process steps based on process completion time
 – Inventory levels
 – Steps required to move goods to machine
 – Scheduling of machine time – use for multiple steps
• Samsung (continued)
 – Impacts
 • Greater utilization of existing equipment
 • Drop in late production deliveries from 26% to 3%
 • Estimated additional sales of $1 billion in 4 year period
 • 4% increase in market share
Clorox

- Production planning algorithm
 - Optimize inventory levels
 - Ensure on-time delivery
 - Minimize production, shipping and inventory costs
- Used demand data and cycle time data to assure production line was fully supplied
- Reduce production when inventories are high
• Clorox (continued)
 – Impacts
 • Reduce inventory levels by 29%
 • Allow scheduling of production down time
 – Reduced inventory costs
 – Allowed for maintenance scheduling
Sample Connected Vehicle Applications

<table>
<thead>
<tr>
<th>Safety</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Brake Lights</td>
<td>Traveler information</td>
</tr>
<tr>
<td>Traffic Signal Violation Warning</td>
<td>Weather Information</td>
</tr>
<tr>
<td>Stop Sign Violation Warning</td>
<td>Navigation</td>
</tr>
<tr>
<td>Curve Speed Warning</td>
<td>Ramp Metering</td>
</tr>
<tr>
<td>Display Local Signage</td>
<td>Signal Timing Optimization</td>
</tr>
<tr>
<td>Electronic Payment</td>
<td>Corridor Management</td>
</tr>
<tr>
<td>Tolling</td>
<td>Infrastructure Management</td>
</tr>
<tr>
<td>Parking</td>
<td>Weather Information</td>
</tr>
<tr>
<td>Automotive</td>
<td>Winter Maintenance</td>
</tr>
<tr>
<td>Vehicle Diagnostics</td>
<td>Pothole Detection</td>
</tr>
<tr>
<td>Software Updates</td>
<td>Automated Mapping</td>
</tr>
</tbody>
</table>
Data Are Critical (and Potentially Lucrative)

- Data drive connected-vehicle applications and services

<table>
<thead>
<tr>
<th>Entities Interested in Data…</th>
<th>May Create Markets for</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTs</td>
<td>Probe data, asset management data, road-weather information</td>
</tr>
<tr>
<td>Auto manufacturers</td>
<td>Vehicle diagnostics and prognostics, driver behavior</td>
</tr>
<tr>
<td>OE Suppliers</td>
<td>Component diagnostics and prognostics</td>
</tr>
<tr>
<td>Drivers and passengers</td>
<td>Real-time route guidance, map updates, media downloads, infotainment…</td>
</tr>
<tr>
<td>Marketers and providers of location-based services</td>
<td>Driver behavior, vehicle location</td>
</tr>
<tr>
<td>Insurance industry</td>
<td>Driver behavior</td>
</tr>
</tbody>
</table>
Connected Vehicle Data

Data Challenges & Opportunities

- Data security
- Threats to personal privacy
- Data analytics and aggregation
Connectivity and Communications Concerns

• Privacy
 – Always an issue when information is shared or tracked over a network
 – Solutions seems to be available (cellular phone providers face similar challenges)

• Driver distraction
 – A significant challenge, and both USDOT and the NTSB have been vocal about this (as has AAA and others)
 – Communications are not the only distraction
 – Hands-free technology becoming more common
 – Could the vehicle drive itself?
Conclusions

• Characteristics of success stories
 – Tie measures closely to objectives and make sure they remain linked
 – Use measures that are meaningful, easily understood and few in number
 – Keep improvement efforts focused on specific functions
 – Encourage employees at all levels to have a stake in the process and bring forward ideas for continuous improvement
 – Recognize that when one bottleneck is solved the next one will show itself – keep looking
 – Build and maintain knowledge database over time
Conclusions

• Applicability to WisDOT Functions
 – Linkages between asset management and maintenance data to reduce inventories, reduce maintenance costs and plan life cycle investments
 – Evaluate component stages of incident response to identify opportunities for faster response and more efficient deployment of resources
 – Continuous feedback on work zone delay with tool to adjust both configuration and timing