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ABSTRACT 
This paper develops an analytical framework for ramp metering, under which various 

ramp control strategies can be viewed as ramifications of the same most-efficient control 

logic with different threshold values, control methods, and equity considerations.  The 

most-efficient control logic only meters the entrance ramps nearest critical freeway 

mainline sections so as to eliminate freeway internal queues, which is derived from a new 

formulation of the optimal ramp control problem.  Instead of assuming the availability of 

real-time origin-destination information, the new formulation takes advantages of the 

stability and predictability of off-ramp exit percentages.  Those properties of the off-ramp 

exit percentages are supported by empirical data, and allow us to formulate the optimal 

ramp control problem as a linear program whose input variables are all directly 

measurable by detectors in real-time.  The solution is also tested on a real-world freeway 

section in a microscopic traffic simulator for demonstration.  Time-dependent origin-

destination tables and off-ramp exit percentages are compared as two alternative ways to 

represent the true real-time demand patterns that are important to freeway ramp metering.   
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1. INTRODUCTION 
The first attempt to solve the ramp metering control problem via optimization at the 

freeway system level goes back to Wattleworth in two papers (Wattlewoth 1963, 1967).  

The linear program proposed in these papers and its followers (see Lovell 1997 for a 

review) are essentially time-invariant optimization minimizing the total travel time in the 

freeway system.  Some distinct attributes of these models include: (a) They all 

incorporate a constraint equation which ensures that freeways operate under free-flowing 

conditions. Hence, the difficulties of dealing with freeway mainline dynamics are 

avoided. (b) Time-dependent origin-destination (OD) demand information is assumed to 

be available. (c) They assume that there are no diversions from freeways to surface 

arterial streets. Recently, Lovell and Daganzo (2000) extended Wattleworth’s steady-

state model to include time-dependency, and developed a computationally-efficient 

greedy heuristic solution. However, the heuristic is only appropriate for small-scale 

networks, and OD information is still a required input.  

There is also a body of literature combining optimal control theory and 

macroscopic traffic flow models (Chang et al. 2002, Kotsialos et al. 2002, Papageorgiou 

1995, Zhang and Recker 1999).  The freeway mainline dynamics therein are described by 

a set of time-discrete equations based on finite difference approximations of specific 

macroscopic traffic flow models.  Control strategies developed along this line also 

confront the difficulty of getting accurate OD information in real-time.  Unclear 

reliability of the estimated OD information and computational complexity are two 

drawbacks preventing these strategies from being implemented widely.  The models 

themselves are usually complicated, which makes it hard to solve to global optimality.   

On the other hand, numerous operational ramp metering algorithms have been 

developed in practice.  Over the years, ramp metering systems have extended to many 

urban areas around the globe1 after its debut in Chicago, IL, in the early 1960s.  

                                                 
1 US cities with ramp metering systems: Phoenix, AZ; Fresno, CA; Sacramento, CA; San Francisco, CA; 

San Diego, CA; Denver, CO; Atlanta, GA; Twin Cities, MN; Las Vegas, NV; Long Island, NY; New York, 

NY; Cleveland, OH; Lehigh Valley area, PA; Philadelphia, PA; Houston, TX; Arlington, VA; Milwaukee, 

WI; and Seattle, WA; Non-US cities: Sydney, Australia; Toronto, Canada; Paris, France; and Birmingham 

and Southampton, UK; Kobe, Japan. 
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Surprisingly, every city has its own strategy, some of which are summarized by 

Bogenberger and May (1999).  Simulation evaluation studies on various ramp control 

strategies become more and more popular.  Although many of these practical algorithms 

are limited in many aspects and based on extensive engineering judgment instead of 

optimization models, they are successful in reducing total delay as demonstrated by some 

field experiments (Levinson et al. 2002) and many simulation studies (Hourdakis and 

Michalopoulos 2003, Kwon et al. 2000, Lomax and Schrank 2000).  Local traffic 

responsive metering algorithms, which base control decisions on real-time traffic data 

collected in the vicinity of individual on-ramps, have also been very successful without 

even touching the issue of system-level optimization, no matter what type of local 

controller is used (Linear: Papageorgiou et al. 1991; Artificial Neural Network: Zhang 

1997; or Fuzzy-logic: Taylor et al. 1998).    

 This brief retrospective examination of both the research and practice sides of 

ramp metering brings our attention to several interesting phenomena and questions.  First, 

there is a gap between the state-of-the-art and the state-of-the-practice, and it is not clear 

which is behind.  Researchers have been working on formal optimization problems with 

assumptions about data availability and complex mathematical models.  In contrast, 

practitioners have developed various ad hoc but operational strategies.  In our 

conversation with several engineers in the Minnesota Department of Transportation who 

oversee the Twin Cities freeway management system, we were told that researchers in the 

field of ramp metering are far behind practitioners.  It is probably true that practitioners 

developed more real-world congestion-mitigating ramp control strategies on their own.  

But what is it that makes those operational strategies successful while few formal theories 

or models are adopted by practitioners?  People working with real-world metering 

systems long ago drew the conclusion empirically that the most benefits of ramp 

metering were from the decision to have a metering system, but not from the 

sophistication of the algorithm (Newman et al. 1969).  Is that true and why?   

 The second observation is that in theoretical development of optimal ramp  

control solutions, researchers tend to use time-dependent OD tables to represent true 

freeway demand patterns, which help formulate the problem mathematically.  Many 

researchers have considered the optimal ramp control problem as a two-stage problem 
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implicitly or explicitly: an accurate and efficient real-time OD estimation procedure 

should be developed, and then that information can be used as input to the following 

optimization stage.  However, in practice, few operational control strategies use OD 

tables.  There must be some way other than OD tables that the practitioners take care of 

the true demand patterns.  Their success implies that the alternative method is somewhat 

reasonable. What is it?  

 Finally, we have seen the following trend in ramp metering studies.  The 

mathematical models become more and more complicated as the scope is expanded from 

local to coordinated and integrated control.  However, the only validation step taken 

seems to be simulating the final product of all research efforts – the resulting ramp 

control strategy.  If the simulation shows positive results, the theoretical model or 

procedure is considered as acceptable.  However, this reasoning process could be 

dangerous because sometimes very crude metering algorithms (e.g. a pre-timed) can also 

significantly reduce total delay.  Simulation studies can show whether one strategy 

outperforms another, but do not shed light on how and why that is the case.  If 

satisfactory efficiency performance is obtained in one control strategy, is it because the 

traffic flow model successfully predicts real traffic conditions, or because an OD 

estimation procedure is incorporated, or because equity is put on a low priority, or 

something else?  If we do not pursue answers to the how and why questions, successful 

simulation, even field evaluation results, do not necessarily imply that the underlying 

theory is superior.  Therefore, an analytical framework under which those questions can 

be explored is clearly in order. 

This paper, as a small step to address the questions and research needs identified 

in the above discussion, develops an analytical framework for ramp metering studies, 

with the hope of leading towards a more unified and generic ramp control theory.  Under 

this framework, various individual elements that constitute a complete ramp control 

strategy can be easily decomposed and studied separately.  We formulate the optimal 

ramp control problem without using the time-dependent OD tables to represent true 

demand patterns.  Instead, the stability of off-ramp exit percentages is studied and used in 

the analysis.  The solution to the new formulation reveals that the most-efficient ramp 

control logic is actually a very simple one, which to some extent explains the success of 
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many operational ramp control strategies.  In this regard, we hope that the paper can also 

help bridge some of the gaps between research and practice in both directions.  A 

simulation experiment is executed only to demonstrate that the core ramp control logic in 

the analytical framework can be implemented in real-time.  The findings also reveal that 

the most efficient control strategy is also the least equitable one.  Considering the 

enormous political and public interests on balancing efficiency and equity of ramp 

meters, this topic is also briefly discussed.   

The remainder of the paper is organized as follows. The next section (Section 2) 

proposes an analytical framework for ramp metering studies. The following section 

(Section 3) is devoted exclusively to two alternative ways of considering real-time 

freeway demand pattern in ramp metering – OD tables versus off-ramp exit percentages. 

In order to complete the construction of the analytical framework, a ramp metering logic 

is required. Therefore, section 4 details our formulation of the optimal ramp control 

problem, the solution of which can serve as the control logic.  Thanks to the stability and 

predictability properties of off-ramp exit percentages, it is able to formulate the problem 

as a linear program.  The simulation experiment on the solution to the linear program is 

described in Section 5, followed by a discussion on equity considerations in Section 6. 

Conclusions and suggestions for future studies are delivered at the end of the paper. 

  

2. AN ANALYTICAL FRAMEWORK FOR RAMP METERING  
Many existing or proposed ramp control strategies avoid internal queues on the freeway 

(i.e. freeway mainline sections operate at free-flow conditions).  It has been shown that, 

in the time-independent ramp control problem, preventing the formation of internal 

queues is a necessary condition that the optimal solution must satisfy (Wattleworth, 

1967).  However, in the time-dependent case the benefits of allowing internal queues are 

not clear.  The analytical framework that will be developed herein is suitable for ramp 

metering controls not allowing freeway internal queues. When implementing a ramp 

metering logic, one has to specify the following elements to form a complete operational 

algorithm: 

 

2.1 Threshold values – the “capacity” of each freeway section 
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The “capacity” of all critical sections must be specified. Since freeway breakdown is 

essentially a probabilistic phenomenon (Persaud et al. 1998), one can be risk averse and 

set critical values in the lower tail of the breakdown probability distribution to minimize 

the probability of failing to ensure that freeway mainline section flows must be strictly 

lower than capacities (see Figure 1).  However, these somewhat smaller critical values 

may lead to an efficiency loss.  On the other hand, a set of more aggressive critical values 

can be used with a higher risk of freeway breakdown.  This risk-seeking strategy may in 

the long run improve the overall efficiency of the controlled freeway system. 

The “capacity” here can be either flow thresholds or density thresholds depending 

on the control method one chooses (see the next section 2.2).  In the case of flow-

capacity, most of the existing ramp control strategies tend to adopt long-run freeway 

queue discharging flow rates.  The threshold set in this way should be considered as risk-

averse decisions, not necessarily optimal values.  However, it will remain impossible to 

take advantage of control methods under uncertainty in the case of ramp metering until 

the probabilistic nature of freeway breakdown is more thoroughly understood.  It should 

also be noted that ramp metering tends to increase the capacity of freeway bottlenecks as 

a recent empirical study suggests (Zhang and Levinson 2003a).  Therefore, the threshold 

values can be better determined by the traffic data when ramp metering is in operation, or 

a markup over the non-metering thresholds should be used.   

 

2.2 Control methods – how one keeps the flow of a section strictly below capacity 

Ramp control strategies keep the flow/density of critical sections below critical values. 

This is a standard control problem and thereby a control method must be selected. In the 

case of ramp control, one must specify several control details:  

(a) Flow control vs. Density control 

One can either control flow or control density to achieve the control objective. 

Earlier ramp control strategies controlled flow, largely because the final control variable, 

the vector of on-ramp metering rates, was actually a vector of flows, not density. But 

recently there is an increasing trend of controlling densities. In density control, some 

rules must be specified to transform densities to final control variables (not necessarily 

numerically, e.g. fuzzy rules).  In a recent study, Zhang and Beegala (2003) show that 
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occupancy thresholds are better indicators of potential breakdown than flow thresholds at 

one bottleneck, which is evaluated by detection rates and false alarm rates using traffic 

data collected in more than thirty peak periods.  Further studies on other freeway sections 

can provide additional information.  Real-world examples: (Flow control) Twin Cities, 

Seattle Bottleneck algorithm; (Density control) SWARM, Denver, ALINEA.  

(b) Feedback control vs. Feed-forward control 

If there is a discrepancy between the actual flow/density and the desired threshold 

values, the controller must take action to eliminate/minimize this difference.  If the 

controller employs a predictor to estimate potential discrepancies and take action before 

the discrepancies actually occur, this type of control is feed-forward.  On the other hand, 

feedback controllers only adjust control parameters (metering rates) based on the detected 

differences (already occurred) of the desired threshold values and the observed.  A 

controller using a Kalman filter is a mix of both feed-forward and feedback concepts 

since it contains both an equation predicting future system states and a feedback equation 

reducing prediction errors based on measured data.  In a sense, feedback controllers are 

more desirable because they guarantee convergence and do not include any predictive 

elements.  However, to ascertain which type of control is more suitable for ramp 

metering, future comparison studies are required.  Real-world examples: (Feedback 

control) ALINEA, ANN, Denver; (Feed-forward control) Twin Cities, SWARM. 

(c) Linear control vs. Non-linear control 

Once a difference term between the desired critical values and the observed/predicted 

values are identified, will this difference be transformed to control parameters linearly or 

non-linearly by the controller? For example, in flow control, the simplest controller is the 

one that directly uses the difference as the metering flow which is a linear controller 

(control parameter = difference). Zhang (1997) found a nonlinear controller based on 

Artificial Neural Network is superior to a standard linear controller in a simulation test.  

But linear controllers are usually cheaper to implement.  Real-world examples: (Linear 

control) ALINEA, Twin Cities, Denver; (Non-linear control) ANN controller, Fuzzy 

Rules.  

 

2.3 Purpose of the analytical framework 
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The analytical framework allows us to view many existing/proposed ramp metering 

algorithms as ramifications of the same ramp control logic with different threshold values 

and/or different control methods and/or different equity considerations (equity 

considerations will be discussed in section 6).  Under this framework, various elements 

that constitute a ramp control strategy can be decomposed and studied individually.  

Previous studies have evaluated and compared various ramp metering algorithms in 

traffic simulators.  One algorithm may outperform another according to the simulation 

results.  However, those studies have very limited theoretical implications because with 

many components in each algorithm, they are unable to answer why the more efficient 

algorithm is more efficient.  Every component, such as the threshold value or the type of 

the controller, can make a difference on the performance of the entire algorithm.  The 

analytical framework developed facilitates the decomposition of these individual factors, 

and comparisons can then focus on just one of the many factors keeping all others equal.  

A research topic under this framework could be, for instance, “all others being equal, is a 

non-linear controller better than a linear one” or “provided the same threshold values and 

control methods, how will the efficiency of the control strategy trade off with equity”.  In 

the long run, such studies should provide more valuable results than those directly 

comparing two existing or proposed ramp control strategies. 

 The last but most important brick of the analytical framework that is missing is a 

control logic from which various algorithms evolve.  Developing the most-efficient 

control logic, or the solution to the optimal ramp control problem, is the major purpose of 

Section 4.  Before that, some remarks on time-dependent OD tables are discussed, and 

properties of off-ramp exit percentages studied.  They provide necessary background 

information for the following formulation of the optimal ramp control problem.   

 

3. THE TROUBLE WITH ORIGIN-DESTINATION TABLES 
For decades, origin-destination tables (OD) have been used as standard tools to represent 

travel demand patterns in transportation studies ranging from urban travel demand 

forecasting to real-time facility management. Researchers have developed numerous 

methods to estimate such OD information, which is later used to predict or manage traffic 

conditions on a freeway segment, a corridor, or a transportation network.  However, there 
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are at least three pitfalls when the notion of OD information is adopted for real-time, 

adaptive freeway ramp metering strategies, which we will critique in the following 

paragraphs.  The purpose of the discussion is not necessarily to depreciate the value of 

the concept of time-dependent OD tables, but to pave a road for alternative ways of 

formulating and solving the optimal ramp control problem.  

  

3.1 The three pitfalls of using OD tables in freeway operations 

The first critique (actually a clarification) we want to make is that there does NOT exist a 

true time-independent OD table. When a freeway section is of interest, a potential user of 

that freeway section has a specific destination off-ramp in mind, and chooses a time 

window to start the trip from an entrance ramp.  But travelers do not necessarily stick to 

their original choices. A driver may change destination after entering the freeway 

mainline due to perceived congestion, temporal change of activity location, or other 

reasons. The true demand pattern is related to all these individual travel decisions, and an 

OD table is simply one way to approximately aggregate these micro-level demand 

decisions. The extensive application of OD tables in travel demand analysis has elevated 

its status to be almost equal to the true demand pattern, and all we are doing seems to be 

estimating the “true” OD table. However, because travelers may change destinations after 

departure, a true OD table does not exist. There are other ways to represent travel 

demand. For instance, in agent-based micro-simulation models, individual travel 

decisions are explicitly considered. Other methods for demand estimation do not have to 

be interpreted in terms of time-dependent OD tables.        

The second critique, recognized by many others, is that it is extremely hard to 

estimate a real-time OD table for freeway operations. As an aggregate approximation of 

the true demand pattern, the value of a time-dependent OD table becomes less and less 

apparent as the time intervals get shorter and shorter.  For many freeway ramp control 

strategies, the control interval is usually shorter than a minute. Is it possible to predict an 

accurate-enough OD table for the next 30 sec? Many studies explore the potentials of 

using real-time detector counts to estimate real-time OD matrices. However, according to 

the authors’ own experience, the problem is not well formulated and in order to obtain a 
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solution, some kinds of aggregation procedures are unavoidable.  The accuracy of the 

resulting estimates is highly questionable.  

Finally, if the OD table is just one way to represent demand patterns and a reliable 

estimation procedure for it is still elusive, is it because the assumption of the availability 

of OD information helps solve the optimal ramp control problem mathematically that 

many introduce OD variables into the formulation of the problem? Unfortunately, the 

answer is still negative.  Although some past studies, ignoring the first-in-first-out 

conditions at on-ramps, mistakenly formulate the time-dependent freeway ramp control 

problem with OD information as a linear programming problem, the work by Lovell and 

Daganzo (2000) has clearly demonstrated that the time-dependent ramp control problem 

with OD information is highly nonlinear and only heuristic solutions are currently 

available for general freeway systems. A following study (Erera et al. 2002) shows that 

the discrete-time version of the problem is NP-complete. Therefore, using an OD table 

does not bring us mathematical advantages. 

  

3.2 An alternative way to estimate real-time demand patterns 

All these stimulate one to ask – is there a better way to represent the true freeway demand 

patterns, which is also predictable from available data with reasonable accuracy, for the 

purpose of ramp metering. We say yes to the question – there is an alternative.   

If the goal of ramp metering is to minimize total travel time, under fixed demand 

the optimal strategy should maximize total output of the system at any control interval (a 

formal mathematical proof of this is given in Section 4.2). Then it is the causal effects 

between on-ramp metering rates (controlled variables) and off-ramp exit percentages that 

must be known to optimally control freeways. These causal effects can be obtained from 

an accurate time-dependent OD table if there is one. However, if those causal effects are 

directly estimable from available data, there is no need to derive them from a real-time 

OD table, which is estimated from the same data set with a questionable procedure. The 

key observation of the proposed approach is that at control interval t, a lot of information 

is already known, such as metering rates (control variables) and off-ramp exit 

percentages (measurable variables) in all previous control intervals, which can help one 

estimate off-ramp exit percentages at t + 1. We understand that the exit percentage at an 
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off-ramp at t + 1 depends on metering rates of all upstream on-ramps at t + 1 (let the time 

be synchronized so there is no need to denote time lags) in a complex way. But we 

believe that the exit percentage in the next control interval can be reasonably estimated 

with only the information available at the current control interval for three reasons: (a) 

Usually, freeway demand patterns change slowly; (b) Keeping metering rates smooth is a 

standard constraint in practice; (c) The exit percentage depends on metering rates at many 

upstream on-ramps and mainline demand characteristics at the furthest upstream section, 

and their combined effects may be averaged out, which can result in some kind of 

stability in exit percentages. Therefore, it is reasonable to assume that off-ramp exit 

percentages also change slowly in real-time. Let α denote exit percentages at an off-ramp. 

This implies that αt+1 may be well approximated by αt, αt-1, …, αt-n where n is a small 

natural number (e.g. The average α in the previous n control intervals can be an estimate 

of αt+1). If this time-series estimation method for αt+1 based on detector data is 

reasonable, then there is really no need to use time-dependent OD tables to represent real-

time demand patterns, as we shall later see in Section 4. 

   

3.3 Some empirical evidence 

Traffic data in the afternoon peak period (14:30 to 19:30) of a randomly-selected day 

(November 02, 1999) on a freeway section with 25 off-ramps on Trunk Highway 169 

northbound (TH169) in the Twin Cities metropolitan area is examined to evaluate the 

stability of off-ramp exit-percentages with ramp metering.  This freeway section is also 

used for a simulation test later in the paper and to avoid repetition, its geographical 

characteristics will only be detailed in Section 5. Loop detectors provide 30-sec flow at 

both off-ramps and freeway mainline sections. Malfunctioning detectors are removed 

from the analysis. Figure 2a plots observed exit percentages at a representative off-ramp 

during a peak period, and demonstrates that exit percentages do not have much variation. 

Eleven different estimates for the exit percentages in the next 30-second control interval 

(αt+1) are compared: the average exit percentages in the previous n 30-second control 

intervals (n = 1, …, 10), and the average exit percentage of the whole peak period. Two 

performance measures are defined to evaluate these estimates, absolute and relative 

errors. For each control interval t (abs(.) calculates the absolute value of a variable): 
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 Absolute error = abs(estimated αt+1 – observed αt+1) 

 Relative error = abs(estimated αt+1 – observed αt+1)/observed αt+1 

The average relative and absolute errors for each off-ramp during the studied peak period 

are computed and presented in Figures 2b and 2c respectively. It is clear that n = 1 is the 

best estimate at all off-ramps examined. The best estimate for αt+1 is simply αt. With this 

estimate, the relative errors at most off-ramps are within 10% of the actual exit 

percentages. In absolute term, the average prediction errors never exceed ±1.2 percentage 

points at all off-ramps. As the average exit percentages in longer intervals are used, the 

prediction errors also increase at diminishing rates. However, even the crudest 

assumption that the exit percentages are constant throughout the peak period only 

produces relative errors around 20% at most off-ramps. Figure 2d plots relative errors 

against average peak period exit percentages. The proposed estimation method predicts 

exit percentages better at off-ramps with higher flow than those with lower flow.  

 This empirical evidence supports the presumption that exit percentages in the next 

control intervals can be reasonably estimated without detailed OD information.  We 

doubt if any existing real-time OD estimation procedure can predict 30-sec exit 

percentages with comparable accuracy. The next section further demonstrates that using 

exit percentages instead of OD information to formulate the optimal ramp control 

problem also tremendously reduces the complexity of the mathematical program and the 

solution algorithm.  Some previous studies assume that exit percentages are independent 

of metering rates.  Although the results here somehow support that assumption, we think 

it is necessary to restate it as follows: the complex dependencies of off-ramp exit 

percentages on metering rates at upstream on-ramps, together with slow-changing 

demand patterns and metering rates, allow one to reasonably estimate exit percentages in 

the next control interval only with known information in the current interval.   

  

4. A THEORY OF OPTIMAL RAMP CONTROL 
The analytical framework views various ramp metering algorithms as ramifications of the 

same ramp control logic.  This section formulates the optimal ramp control problem, and 

provides a solution that can serve as that logic.  
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4.1 Notation 

We will follow these notation conventions hereafter in the paper. 

A: the furthest upstream flow of the whole freeway system; 

B: flow on a freeway section measured at the furthest downstream point; 

C: capacity of a freeway section; 

D: arrival flow at an entrance ramp;  

i:  index of entrance ramps;  

I: number of entrance ramps;  

j: index of exiting ramps;    

J: number of exiting ramps; 

k: index of freeway sections;          

K: number of freeway sections; 

M: departure flow at an entrance ramp (also the metered flow if the ramp is metered);  

q: arrival rate for the whole freeway system; 

Q: departure rate of the whole freeway system 

S: standing queue at an entrance ramp, see equation (9) and (10); 

t: index of time intervals;    

t0:  starting time of the ramp metering control period; 

T:  end time of the control period;  

X: flow at exiting ramps;  

α: exit percentage at an off-ramp = exiting ramp flow / upstream mainline flow,   

        α∈[0, 1]; 

γ: a I ×K indication matrix,   γik = 1  if entrance ramp i is on section k,  

       γjk = 0 otherwise;. 

δ: a J×K indication matrix,   δjk = 1  if exiting ramp j is on section k,  

      δjk = 0  otherwise; 

∆: a K×Κ synchronization matrix, ∆k1,k2 = free-flow travel time from section k1 to k2;  

 

Figure 3 illustrates the freeway coding method. A freeway system can be divided 

into a series of freeway sections (section 1 to section K), each of which contains either an 

on-ramp or an off-ramp. On-ramps could be metered by a particular control algorithm or 
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not metered. A section starts from the location immediately upstream of the on/off-ramp 

it contains and ends at the starting point of the immediately downstream section. All 

sections can be categorized into three types: metered-section (e.g. section 1 and section 

K), unmetered-section (e.g. section 3) and off-ramp-section (e.g. section 2). 

 

4.2 Formulating the optimal ramp control problem 

The whole freeway system is considered as a queuing system in which the nth vehicle 

entering the system may not be the nth vehicle leaving the system. Therefore flow data 

collected at boundaries of the system do not allow one to track the travel times of 

individual vehicles since the first-in-first-out (FIFO) conditions are violated. Note that 

on-ramp queues are still subject to FIFO conditions.  The arrival rate of this queuing 

system qt at any time interval t is:  

 ∑
=

+=
I

i
titt DAq

1
,                (1) 

 

The departure rate of this queuing system Qt is: 

∑
=
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Total travel time is the area bounded by the arrival curve and the departure curve in the 

queuing diagram. The objective for optimal ramp metering control is to minimize the 

total travel time. By assuming a fixed arrival curve, i.e. no route choices before departure, 

minimizing total travel time is equal to maximizing the area under the departure curve 

which is the integral of departure rates over the whole control period: 

∫
=
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Papageorgiou (1983) shows that the time-discrete version of this integral is: 
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Substitute equation (2) into (4), the objective function becomes: 
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This objective is subject to a set of control or physical constraints: 
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We also have the following relationships: 
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(5) to (11) complete the formulation of a linear programming form of the optimal ramp 

control problem (LP). Inequality (6) states that the flows of all freeway sections are not 

allowed to exceed capacity at any time. Inequality (7) is a physical restriction which 

states that metered flow rates must be positive and not larger than the current on-ramp 

demand. Equation (8) describes the relationship among off-ramp flows, mainline flows 

and off-ramp exit percentages. Equation (9) updates the on-ramp standing queues and 

(10) is the initialization equation. Equation (11) is a spatially iterative process through 

which metered flow rates M, the control variables finally come into the objective function 

after substitution. Although equations (11) and (8) look like two simultaneous equations, 

they are actually not, as long as the spatially iterative process starts from the furthest 

upstream section K.  

If all input variables are known, the problem can be solved by any standard LP 

algorithms. However, unless one assumes constant exit percentages at off-ramps (which 

may not be as crude an assumption as it seems), exit percentages should be updated in 
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every control interval in real-time using the procedure described in the previous section.  

The benefit of the global version is that it provides globally optimal solution with the 

assumption that every input parameter is known a priori. The real-time version is 

inevitably myopic, but takes advantage of information that becomes available in the 

control process. Future information can be predicted, however, it is impossible to 

accurately predict all input variables for the entire control period in a system as dynamic 

as freeways. Therefore, we will focus on the real-time version of the new formulation of 

the optimal ramp control problem. 

  

4.3 A real-time version of the LP 

A real-time ramp control strategy at control interval t aims to optimize the system in the 

next control interval t+1 based on all information available at t. A rolling-synchronized-

horizon technique is adopted and the global optimization objective function, equation  

(5), becomes: 

s
J

j
tjt

tatXBMax ss ∑
=

++
+

1
1,1
)(            (12) 

We use superscript s to denote the synchronized time. If the synchronized time ts at 

section 1 is the absolute time t, then the synchronized time ts at section k is absolute time 

t - ∆k,1. The notion of synchronized time is convenient because it eliminates the complex 

notation associated with free-flow travel times. Constraints (6) and (7) still hold in 

synchronized time: 

ss tktk CB ,, <               (13) 

ss titi
SM

,,
0 ≤≤              (14) 

In transforming Equation (5) to (12), dependencies between time slices are thrown 

out. This ignorance of time dependence allows one to develop a solution procedure 

without any predictive elements. If there are any benefits to restricting entering vehicles 

beyond what would be considered optimal during a single control interval, to allow for 

more efficient usage of the freeway in later control intervals, these benefits will be lost in 

the above transformation. However, it is reasonable to believe that this potential loss of 

benefits should not be significant for two reasons: (a) Constraint (6) assures that there are 

no queues on freeway mainline sections (Rigorously there could be some transient 
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congestion on freeway mainline sections). Therefore, any queues that remain in the 

system at the end of a control interval and will be dealt with during later control intervals 

are on-ramp queues. (b) The structure of Equation (5) reveals that allowing more vehicles 

to leave the system sooner is preferred to restricting them, since the weights on earlier 

departures are higher than later ones (the weight is (T - t)).  

Again, the real-time optimization problem is an LP problem with many fewer 

control variables compared to the global optimization problem. Standard solution 

algorithms (Simplex, Interior point, etc.) apply. All input variables, including exit 

percentages, are directly measurable from currently available traffic detection hardware, 

and they should be updated in every control interval.  However, we further pursue a 

heuristic solution in the next subsection, obviously not because an optimal solution 

algorithm is unavailable or inefficient, but because the heuristic solution has very 

important qualitative meaning.  

 

4.4 A heuristic solution 

An intuitive solution to the real-time optimal ramp control problem is developed in this 

subsection.  This simple solution method, with physical meaning easy to understand, very 

likely provides the maximum system departure rate of all possible solutions. 

To facilitate the presentation of the heuristic, we will use a numerical example 

shown in Figure 4. Inequality (13) will be referred as constraint 1 and inequality (14) 

constraint 2 in the following discussion, as well as in Figure 4. The heuristic consists of a 

forward process and a backward process (by “forward”, we mean the same direction that 

traffic flows) executed iteratively. In general, the forward process reflects the nature of 

the optimization objective function, while the backward process is enforced by the two 

constraints. In the graph, regular fonts stand for either real-time data collected by detector 

or threshold capacity values preset by the controller. Bold and italic fonts denote values 

determined by the forward process and the backward process respectively. Again, all 

values in the graph are synchronized-time values. We start the “forward process” (the 

solid arrow) from the furthest upstream section 3 and let all vehicles waiting at the on-

ramps (1 and 2) enter the freeway (M1 = S1, M2 = S2, the right half of constraint 2, Mi ≤ 

Si, is guaranteed to be satisfied since all the following steps can only decrease the 
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metering rates). Then given these metering rates, we calculate the flow of the 

immediately downstream mainline section (e.g. B2 = 4500 based on B3, M2 and α2). 

Whenever this forward process proceeds to a new downstream section, we check whether 

constraint 1 is satisfied (e.g. when the forward process goes to section 2, we check if B2 < 

C2. A black-flag in the figure means it is satisfied, a white flag otherwise). When in a 

section, constraint 1 is not satisfied, it becomes a critical section and a “backward 

process” will be applied starting from this section and going upstream (the dashed arrow). 

The backward process first adjusts the on-ramp metering rate at the nearest on-ramp (on-

ramp 1) to satisfy constraint 1 at the critical section (M1 = 500). The resulting M1 at this 

time could be negative (A negative M1 means that more than one on-ramp needs to be 

restricted). Then we check whether the left half of constraint 2, 0 ≤ Mi, is satisfied at the 

adjusted on-ramp (on-ramp 1). If it is satisfied, we stop the backward process and start a 

new forward process from the critical section. Otherwise (negative M1), the backward 

process needs to go further upstream (restrict more on-ramps to satisfy both constraints).  

The above heuristic solves the real-time version of the LP since all constraints are 

satisfied. We will then show that this heuristic also gives the optimal solution in the 

numerical example. The solution we have now is M (M1 = 500, M2 = 1000). We denote 

another solution as M’(M1’, M2’). Since M’ is a solution, it must satisfy both constraints 

that apply (this means M2’ ≤  M2 since M2 = S2). Now there are only three possible types 

of M’: 

(a) M’(M1’ ≤  M1 and M2’ ≤  M2, but ~ (M1’ =  M1 and M2’ =  M2)); 

(b) M’(M1’ > M1 and M2’ <  M2); 

(c) M’(M1’ > M1 and M2’ =  M2); 

It is obvious that (c) does not satisfy constraint 1 in freeway mainline section 1, so it is 

not a feasible solution. Also, under (a) the resulting total departure rate of the system is 

less than that under M and hence (a) is an inferior solution to M.  

Whether M is the optimal solution now becomes a comparison between M’(M1’ > 

M1 and M2’ <  M2) with M. Let M1’ = M1 + n, where n is a positive number.  We have 

M2’ ≤  M2 – n/α2 in order to satisfy constraint 1 in section 1. Then the total system 

departure rate under M and M’ can be compared:  

 Q = B1 + X1 + X2 
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Under M:  QM = C1 + C1[α1/ (1 - α1)] + B2α2/(1 - α2)  

 Under M’: QM’ ≤ C1 + C1 [α1/ (1 - α1)] + B2α2/(1 - α2) - nα2/(1 - α2) 

Therefore: QM’ < QM 

M’(M1’ > M1 and M2’ <  M2) is also an inferior solution to M. Therefore M is the optimal 

metering rate for this numerical example. Since our derivation does not depend on the 

concrete values in the numerical example, this heuristic solution should also be the  

optimal solution to this sample network with any different parameters. The essential 

philosophy of the heuristic is that, by metering the nearest on-ramp(s) to the critical 

freeway section, one minimizes the efficiency loss at off-ramps upstream of the critical 

freeway section. For a larger network, to show M is still the optimal solution, the logical 

reasoning we just presented in the numerical example would take more texts to explain 

because the number of possible solutions increases exponentially. However, the 

philosophy underlying the heuristic solution procedure should also apply in larger 

networks.  

 The heuristic solution has very important qualitative meaning. It states that the 

most-efficient ramp metering control logic is the one metering the nearest upstream 

entrance ramp(s) to any critical freeway section so as to keep the flow of this section 

strictly below capacity.  This explains why some local metering algorithms, and 

coordinated algorithms that specifically target bottlenecks are successful – they are really 

close to the most-efficient metering logic.  The logic also provides some theoretical 

support to actions such as temporary ramp closure.  It seems that practitioners have, 

probably implicitly, taken advantage of the stability of off-ramp exit percentages to deal 

with real-time dynamic demand patterns in developing those control strategies.  It should 

be noted that the heuristic itself is apparently not a local metering logic because the 

backward process requires coordination among several on-ramps.   

The heuristic is also very desirable from a computational feasibility perspective. 

First, it only uses information that has been accumulated to the decision point and no 

prediction is required. Second, the computation work involved in the heuristic is a 

straightforward iterative process with simple mathematical operations (only plus and 

minus) in each iteration step. However, since the original real-time optimal ramp control 

problem is an LP, the additional computational advantages offered by the heuristic may 
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not be very valuable. Finally, with the least number of on-ramps being controlled to 

provide free-flow conditions on freeway mainline for all commuters, the most-efficient 

control logic is also expected to be the least equitable one.   

 

5. A SIMULATION EXPERIMENT 
A ramp control strategy that directly implements the heuristic (most-efficient ramp 

control logic) is developed using risk-averse critical values and linear-feedback-flow 

control.  This new strategy is coded in C++ and tested in a microscopic traffic simulator,  

AIMSUN2, to demonstrate that the control logic can be directly implemented in real-

time.  An introduction to this simulator is available in Barceló et al. (1994).  A 20-km 

section of Trunk Highway 169 (TH169) northbound from I-494 to I-94 in the Twin 

Cities, MN, is selected as the test site. Most of the test section consists of two lanes with 

ten weaving sections. It has 24 entrance ramps, of which one is unmetered. The metered 

ramps include 4 HOV bypasses and two freeway-to-freeway ramps from TH62 and I-

394. The test site contains 25 exit ramps. The temporal (14:00 ~ 19:30 PM) and spatial 

boundaries of the simulation experiment are free of congestion and the traffic demand 

data were collected on March 21, 2000. The simulated freeway network of this site has 

been calibrated in the AIMSUN2 simulator in an earlier study (Hourdakis and 

Michalopoulos 2002).  

An existing ramp control strategy — the Minnesota Zonal Algorithm (coded for 

the AIMSUN2 by Hourdakis and Michalopoulos 2002), along with the no-control 

scenario are also simulated on the same test site for comparison. The details of the 

Minnesota Zonal Algorithm (referred to as the Minnesota algorithm hereafter) are 

discussed in Minnesota Department of Transportation (1998).  The simulated total travel 

times and total ramp delays under the three control scenarios are derived from simulation 

outputs of five replications with the same randomly-generated random seeds, and 

summarized in Table 1. The total travel time is 10 percent less under the heuristic control 

compared to the no-control scenario. The Minnesota algorithm only shortens the total 

travel time by 7 percent. It takes only two minutes of CPU time on a Pentium 1.7GHz PC 

with 256mb memory to run the heuristic on the 20-km test freeway section for the whole 

peak period.  This simulation is essentially a controlled experiment because all critical 
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values and control methods of the strategy based on the most-efficient metering logic are 

set to be the same as the Minnesota algorithm.  Under the proposed analytical framework, 

it is able to explain the two reasons why the Minnesota algorithm gives inferior measures 

of effectiveness: (a) it controls more on-ramps to relieve critical sections – some equity 

consideration; (b) it only concerns traffic conditions at several fixed historical bottlenecks 

while the most-efficient logic considers every freeway section as a potential bottleneck.    

 

6. EQUITY CONSIDERATION 
The trade-off between efficiency and equity in freeway ramp metering has been pointed 

out in several previous studies (Kotsialos and Papageorgiou 2001, Levinson et al. 2002). 

The heuristic developed in section 4 also suggests that the most efficient ramp control 

strategy is the least equitable one.  Coordinating on-ramp meters is often a necessary step 

to eliminate freeway mainline queues.  However, it can also be viewed as an equity 

consideration.  A theoretical way to consider equity in ramp control has not been 

previously studied, but some practical equity considerations have evolved implicitly over 

time in real-world ramp control strategies. The first control constraint that improves ramp 

control equity is probably the maximum queue length restriction, although the original 

motivation of this constraint is to prevent ramp queue spillover to local streets. In many 

practical ramp control strategies, there is a minimum/maximum metering rate constraint 

which is also beneficial from an equity point of view. More specifically, the Denver 

strategy has a so-called “helper algorithm” among on-ramps in which if one ramp is 

operated at its most restrictive rates, the ramp that immediately upstream of it will be 

operated more restrictively in the next control interval to release the downstream one to 

some extent.  The Minnesota Zonal algorithm controls all on-ramps in a control zone to 

assure the flow at the zone bottleneck is below capacity.  The new Minnesota Stratified 

Zonal algorithm has a maximum ramp delay restriction which ensures that the maximum 

ramp delay will not exceed four minutes for each individual driver.  A more systematic 

way to consider equity in ramp metering probably requires a change in the objective 

function itself.  Stated preference surveys and laboratory driving simulation experiments 

disclose that drivers value ramp delays and free-flow travel time differently.  Freeway 

operators may need to consider minimizing total perceived travel time instead of absolute 



 22 

travel time.  A more detailed account on that topic is provided in Zhang and Levinson 

(2003b).  

 

7. CONCLUSIONS 
The analytical framework developed in this research should assist both researchers and 

practitioners. It is shown analytically that the most efficient ramp control logic is the one 

that meters the on-ramps closest to any critical freeway sections such that there is no 

internal queue on freeway mainline. With different types of threshold values, control 

methods, and equity considerations, the metering logic can evolve into various practical 

ramp control strategies. The developed framework also provides a platform on which 

elements in a ramp control strategy can be decomposed and compared separately. In the 

long run, these comparisons would allow us to answer why one strategy outperforms 

another.    

 The stability of off-ramp exit percentages is essential in deriving the most 

efficient ramp control logic, which is supported by some empirical data on one freeway 

in the Twin Cities.  The predictability of the exit percentage in the next control horizon 

using known information accumulated up to the decision point is a very desirable 

property of freeway traffic.  With this predictability, the global optimal ramp control 

problem can be formulated as a linear program.  All input variables for the optimization 

program become directly measurable by loop detectors.  Future studies may examine the 

stability of off-ramp exit percentages on other freeways.  Data required for such studies 

should be widely available.  Formal analysis tools for time-series data may also be used 

to study properties of off-ramp exit percentages.  The scope of this study is limited to the 

optimal control of a single freeway, and how the stability of off-ramp exit percentage can 

help formulate and solve integrated corridor (a freeway and parallel arterial streets) 

control problems has not been explored.   

It is interesting, though not very surprising, that the findings suggest the most 

efficient ramp control logic is also the least equitable one.  To achieve efficiency goals, 

we must meter the least number of on-ramps in order to provide free-flow conditions for 

all commuters on freeway mainline, a majority of whom access the freeway through other 

on-ramps with less restricted metering rates. With efficiency as the sole criterion, we may 
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have done an engineering job very well. However, such a strategy is not politically 

palatable and may lack public acceptance.  Minimized travel time for the system as a 

whole is a good thing. However, if that is achieved by helping some drivers at the 

expense of others, there is also a serious equity issue that should be considered. Future 

studies should pursue a mechanism balancing the efficiency and equity of ramp meters.  
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Table 1. Summary of simulation result on TH169 northbound test site 

Unit: veh·hrs Total travel time Total ramp delay
Heuristic 6240 401
Minnesota 6412 661
No Control 6929 0
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Figure 2. Estimation methods for exit percentages in the next control interval
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Figure 4. A numerical example to illustrate the heuristic solution process 
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